These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 767326)

  • 1. Glutamate transport in membrane vesicles of the wild-type strain and glutamate-utilizing mutants of Escherichia coli.
    Kahane S; Marcus M; Metzer E; Halpern YS
    J Bacteriol; 1976 Mar; 125(3):770-5. PubMed ID: 767326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-dependent glutamate transport in membrane vesicles of Escherichia coli K-12.
    Kahane S; Marcus M; Barash H; Halpern YS
    FEBS Lett; 1975 Aug; 56(2):235-9. PubMed ID: 1098933
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of growth conditions on glutamate transport in the wild-type strain and glutamate-utilizing mutants of Escherichia coli.
    Kahane S; Marcus M; Metzer E; Halpern YS
    J Bacteriol; 1976 Mar; 125(3):762-9. PubMed ID: 767325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1. Membrane vesicles of Escherichia coli K-12 CS7, a strain gentically derepressed for glutamate permease, maintain low aspartate transport activity, like that of prep.
    Kahane S; Metzer E; Halpern YS
    Eur J Biochem; 1976 Jul; 66(3):583-9. PubMed ID: 782886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli.
    Willis RC; Furlong CE
    J Biol Chem; 1975 Apr; 250(7):2581-6. PubMed ID: 1091636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli.
    Silver S; Toth K; Scribner H
    J Bacteriol; 1975 Jun; 122(3):880-5. PubMed ID: 807559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active transport of oxalate by Pseudomonas oxalaticus OX1.
    Dijkhuizen L; Groen L; Harder W; Konings WN
    Arch Microbiol; 1977 Nov; 115(2):223-7. PubMed ID: 202212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prosthecae of Asticcacaulis biprosthecum: system for the study of membrane transport.
    Porter JS; Pate JL
    J Bacteriol; 1975 Jun; 122(3):976-86. PubMed ID: 238952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli.
    Miner KM; Frank L
    J Bacteriol; 1974 Mar; 117(3):1093-8. PubMed ID: 4591944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12.
    Barash H; Halpern YS
    Biochem Biophys Res Commun; 1971 Nov; 45(3):681-8. PubMed ID: 4942721
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the specific pyruvate transport system in Escherichia coli K-12.
    Lang VJ; Leystra-Lantz C; Cook RA
    J Bacteriol; 1987 Jan; 169(1):380-5. PubMed ID: 3025181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for isolation of Escherichia coli mutants with defects in the proton-translocating sector of the membrane adenosine triphosphatase complex.
    Fillingame RH; Knoebel K; Wopat AE
    J Bacteriol; 1978 Nov; 136(2):570-81. PubMed ID: 152309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate transport in wild-type and mutant strains of Escherichia coli.
    Halpern YS; Lupo M
    J Bacteriol; 1965 Nov; 90(5):1288-95. PubMed ID: 5321483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and properties of a periplasmic glutamate-aspartate binding protein from Escherichia coli K12 strain W3092.
    Willis RC; Furlong CE
    J Biol Chem; 1975 Apr; 250(7):2574-80. PubMed ID: 1091635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG; Gitter BD; Rowe JJ
    J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B.
    Deguchi Y; Yamato I; Anraku Y
    J Bacteriol; 1989 Mar; 171(3):1314-9. PubMed ID: 2537813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations affecting the different transport systems for isoleucine, leucine, and valine in Escherichia coli K-12.
    Guardiola J; De Felice M; Klopotowski T; Iaccarino M
    J Bacteriol; 1974 Feb; 117(2):393-405. PubMed ID: 4590465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

  • 20. Properties of the glutamate transport system in Escherichia coli.
    Halpern YS; Even-Shoshan A
    J Bacteriol; 1967 Mar; 93(3):1009-16. PubMed ID: 5337827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.