These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 767326)

  • 21. Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis.
    Bisschop A; Doddema H; Konings WN
    J Bacteriol; 1975 Nov; 124(2):613-22. PubMed ID: 171251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli.
    Tsuchiya T; Hasan SM; Raven J
    J Bacteriol; 1977 Sep; 131(3):848-53. PubMed ID: 330502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ascorbate-phenazine methosulfate-dependent membrane energization in respiratory chain mutants of Escherichia coli.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1976 Sep; 72(1):195-201. PubMed ID: 791275
    [No Abstract]   [Full Text] [Related]  

  • 24. Genetics of the glutamine transport system in Escherichia coli.
    Masters PS; Hong JS
    J Bacteriol; 1981 Sep; 147(3):805-19. PubMed ID: 6115851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate.
    Boonstra J; Sips HJ; Konings WN
    Eur J Biochem; 1976 Oct; 69(1):35-44. PubMed ID: 791648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and properties of glutamate binding protein from the periplasmic space of Escherichia coli K-12.
    Barash H; Halpern YS
    Biochim Biophys Acta; 1975 Mar; 386(1):168-80. PubMed ID: 236016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis.
    Dean DA; Davidson AL; Nikaido H
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9134-8. PubMed ID: 2531894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source.
    Chen LI; Chen CH
    Arch Biochem Biophys; 1986 Dec; 251(2):606-15. PubMed ID: 3026249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of glutamate transport in Escherichia coli B. 1. Proton-dependent and sodium ion dependent binding of glutamate to a glutamate carrier in the cytoplasmic membrane.
    Fujimura T; Yamato I; Anraku Y
    Biochemistry; 1983 Apr; 22(8):1954-9. PubMed ID: 6133550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium-stimulated transport of glutamate in Escherichia coli.
    Frank L; Hopkins I
    J Bacteriol; 1969 Oct; 100(1):329-36. PubMed ID: 4898997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport.
    Short SA; Kaback HR; Kaczorowski G; Fisher J; Walsh CT; Silverstein SC
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5032-6. PubMed ID: 4612538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and functional expression in Escherichia coli of the sodium/proton/glutamate symport proteins of Bacillus stearothermophilus and Bacillus caldotenax.
    Tolner B; Poolman B; Konings WN
    Mol Microbiol; 1992 Oct; 6(19):2845-56. PubMed ID: 1359385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between maltose-binding protein and the membrane-associated maltose transporter complex in Escherichia coli.
    Dean DA; Hor LI; Shuman HA; Nikaido H
    Mol Microbiol; 1992 Aug; 6(15):2033-40. PubMed ID: 1406246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli.
    Kerwar GK; Gordon AS; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):291-7. PubMed ID: 4623127
    [No Abstract]   [Full Text] [Related]  

  • 35. The involvement of the membrane oxidoreduction system in stimulating amino acid uptake in Ehrlich ascites tumor cells.
    Yamamoto S; Kawasaki T
    Biochim Biophys Acta; 1981 Jun; 644(2):192-200. PubMed ID: 7260073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli.
    Berger EA; Heppel LA
    J Biol Chem; 1972 Dec; 247(23):7684-94. PubMed ID: 4564569
    [No Abstract]   [Full Text] [Related]  

  • 37. Proline transport carrier-defective mutants of Escherichia coli K-12: properties and mapping.
    Motojima K; Yamato I; Anraku Y
    J Bacteriol; 1978 Oct; 136(1):5-9. PubMed ID: 361707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between the nitrate and oxygen respiratory systems in membrane vesicles of Escherichia coli K-12. Effect of 2-N-heptyl-4-hydroxyquinoline-N-oxide and ultraviolet light.
    Sánchez Crispín JA; Dubourdieu M; Chippaux M; Puig J
    Acta Cient Venez; 1983; 34(5-6):329-35. PubMed ID: 6399969
    [No Abstract]   [Full Text] [Related]  

  • 39. Proton-linked D-xylose transport in Escherichia coli.
    Lam VM; Daruwalla KR; Henderson PJ; Jones-Mortimer MC
    J Bacteriol; 1980 Jul; 143(1):396-402. PubMed ID: 6995439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus.
    Short SA; White DC; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):298-304. PubMed ID: 4553437
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.