These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7673261)

  • 1. An inverse approach to determining myocardial material properties.
    Moulton MJ; Creswell LL; Actis RL; Myers KW; Vannier MW; Szabó BA; Pasque MK
    J Biomech; 1995 Aug; 28(8):935-48. PubMed ID: 7673261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardial material property determination in the in vivo heart using magnetic resonance imaging.
    Moulton MJ; Creswell LL; Downing SW; Actis RL; Szabó BA; Pasque MK
    Int J Card Imaging; 1996 Sep; 12(3):153-67. PubMed ID: 8915716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing cardiac material parameters with a genetic algorithm.
    Nair AU; Taggart DG; Vetter FJ
    J Biomech; 2007; 40(7):1646-50. PubMed ID: 17056049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method and apparatus for soft tissue material parameter estimation using tissue tagged Magnetic Resonance Imaging.
    Augenstein KF; Cowan BR; LeGrice IJ; Nielsen PM; Young AA
    J Biomech Eng; 2005 Feb; 127(1):148-57. PubMed ID: 15868797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall.
    Okamoto RJ; Moulton MJ; Peterson SJ; Li D; Pasque MK; Guccione JM
    J Biomech Eng; 2000 Oct; 122(5):479-87. PubMed ID: 11091948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart.
    Liu H; Shi Ast P
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):378-89. PubMed ID: 19272914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo assessment of nonlinear myocardial deformation using finite element analysis and three-dimensional echocardiographic reconstruction.
    Gotteiner NL; Han G; Chandran KB; Vonesh MJ; Bresticker M; Greene R; Oba J; Kane BJ; Joob A; McPherson DD
    Am J Card Imaging; 1995 Jul; 9(3):185-94. PubMed ID: 7549359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Guccione JM; McCulloch AD; Waldman LK
    J Biomech Eng; 1991 Feb; 113(1):42-55. PubMed ID: 2020175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental method for evaluating constitutive models of myocardium in in vivo hearts.
    Creswell LL; Moulton MJ; Wyers SG; Pirolo JS; Fishman DS; Perman WH; Myers KW; Actis RL; Vannier MW; Szabó BA
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H853-63. PubMed ID: 8067442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an in vivo method for determining material properties of passive myocardium.
    Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB
    J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests.
    Schmid H; O'Callaghan P; Nash MP; Lin W; LeGrice IJ; Smaill BH; Young AA; Hunter PJ
    Biomech Model Mechanobiol; 2008 Jun; 7(3):161-73. PubMed ID: 17487519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data.
    Balaban G; Alnæs MS; Sundnes J; Rognes ME
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1509-1521. PubMed ID: 27008196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo estimation of passive biomechanical properties of human myocardium.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    Med Biol Eng Comput; 2018 Sep; 56(9):1615-1631. PubMed ID: 29479659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of stress and strain calculations to passive material parameters in cardiac mechanical models using unloaded geometries.
    Kallhovd S; Sundnes J; Wall ST
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):664-675. PubMed ID: 30822148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of a constitutive relation for passive myocardium: II. Parameter estimation.
    Humphrey JD; Strumpf RK; Yin FC
    J Biomech Eng; 1990 Aug; 112(3):340-6. PubMed ID: 2214718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of left ventricular mechanics to myofiber architecture: A finite element study.
    Nikou A; Gorman RC; Wenk JF
    Proc Inst Mech Eng H; 2016 Jun; 230(6):594-8. PubMed ID: 26975892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effect of high +Gz accelerations on human cardiac function.
    Jamshidi M; Ahmadian MT
    J Mech Behav Biomed Mater; 2013 Nov; 27():54-63. PubMed ID: 23849319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.