These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 7673374)

  • 1. Coupled glucose transport and metabolism in cultured neuronal cells: determination of the rate-limiting step.
    Whitesell RR; Ward M; McCall AL; Granner DK; May JM
    J Cereb Blood Flow Metab; 1995 Sep; 15(5):814-26. PubMed ID: 7673374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of glucose transport and phosphorylation in Xenopus oocytes and cultured cells: determination of the rate-limiting step.
    Whitesell RR; Aboumrad MK; Powers AC; Regen DM; Le C; Beechem JM; May JM; Abumrad NA
    J Cell Physiol; 1993 Dec; 157(3):509-18. PubMed ID: 8253862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose transport in primary cultured neurons.
    Heidenrich KA; Gilmore PR; Garvey WT
    J Neurosci Res; 1989 Apr; 22(4):397-407. PubMed ID: 2760941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [
    Dienel GA; Cruz NF; Sokoloff L; Driscoll BF
    Neurochem Res; 2017 Jan; 42(1):50-63. PubMed ID: 26141225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro.
    Waki A; Kato H; Yano R; Sadato N; Yokoyama A; Ishii Y; Yonekura Y; Fujibayashi Y
    Nucl Med Biol; 1998 Oct; 25(7):593-7. PubMed ID: 9804039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose transport and phosphorylation in single cardiac myocytes: rate-limiting steps in glucose metabolism.
    Manchester J; Kong X; Nerbonne J; Lowry OH; Lawrence JC
    Am J Physiol; 1994 Mar; 266(3 Pt 1):E326-33. PubMed ID: 8166252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of astroglia to functionally activated energy metabolism.
    Sokoloff L; Takahashi S; Gotoh J; Driscoll BF; Law MJ
    Dev Neurosci; 1996; 18(5-6):344-52. PubMed ID: 8940605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexose transport in L6 rat myoblasts. I. Rate-limiting step, kinetic properties, and evidence for two systems.
    D'Amore T; Lo TC
    J Cell Physiol; 1986 Apr; 127(1):95-105. PubMed ID: 3958060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Deoxyglucose transport and metabolism in Caco-2 cells.
    Bissonnette P; Gagné H; Blais A; Berteloot A
    Am J Physiol; 1996 Jan; 270(1 Pt 1):G153-62. PubMed ID: 8772513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate autoregulation of glucose transport: hexose 6-phosphate mediates the cellular distribution of glucose transporters.
    Sasson S; Kaiser N; Dan-Goor M; Oron R; Koren S; Wertheimer E; Unluhizarci K; Cerasi E
    Diabetologia; 1997 Jan; 40(1):30-9. PubMed ID: 9028715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of transport and metabolism on brain glucose utilization: a reevaluation of the lumped constant.
    Crane PD; Pardridge WM; Braun LD; Nyerges AM; Oldendorf WH
    J Neurochem; 1981 Apr; 36(4):1601-4. PubMed ID: 7264657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GLUT2 and hexokinase control proximodistal gradient of intestinal glucose metabolism in the newborn pig.
    Cherbuy C; Darcy-Vrillon B; Posho L; Vaugelade P; Morel MT; Bernard F; Leturque A; Penicaud L; Duée PH
    Am J Physiol; 1997 Jun; 272(6 Pt 1):G1530-9. PubMed ID: 9227491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2-deoxyglucose retention in murine tumor models.
    Nelson CA; Wang JQ; Leav I; Crane PD
    Nucl Med Biol; 1996 May; 23(4):533-41. PubMed ID: 8832712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of glucose phosphorylation in L6 myotubes by compartmentalization, hexokinase, and glucose transport.
    Whitesell RR; Ardehali H; Printz RL; Beechem JM; Knobel SM; Piston DW; Granner DK; Van Der Meer W; Perriott LM; May JM
    Biochem J; 2003 Feb; 370(Pt 1):47-56. PubMed ID: 12410639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentalization of transport and phosphorylation of glucose in a hepatoma cell line.
    Whitesell RR; Ardehali H; Beechem JM; Powers AC; Van der Meer W; Perriott LM; Granner DK
    Biochem J; 2005 Mar; 386(Pt 2):245-53. PubMed ID: 15473866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the anticancer agent VM-26 on hexose uptake in Ehrlich cells.
    Wright SE; White JC
    Cancer Biochem Biophys; 1989 May; 10(3):185-96. PubMed ID: 2776116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of starvation and diabetes on glucose transport in the lung.
    Das DK; Steinberg H
    Clin Physiol Biochem; 1984; 2(5):239-48. PubMed ID: 6542476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The increase in gap junctional communication decreases the rate of glucose uptake in C6 glioma cells by releasing hexokinase from mitochondria.
    Sánchez-Alvarez R; Tabernero A; Medina JM
    Brain Res; 2005 Mar; 1039(1-2):189-98. PubMed ID: 15781061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis.
    Tjhin ET; Staines HM; van Schalkwyk DA; Krishna S; Saliba KJ
    FEBS Lett; 2013 Oct; 587(19):3182-7. PubMed ID: 23954294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.