These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7674078)

  • 21. Unicortical self-drilling external fixator pins reduce thermal effects during pin insertion.
    Greinwald M; Varady PA; Augat P
    Eur J Trauma Emerg Surg; 2018 Dec; 44(6):939-946. PubMed ID: 29242952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the starting point of half-pin insertion on the insertional torque of the pin at the tibia.
    Kim SJ; Kim SH; Kim YH; Chun YM
    Yonsei Med J; 2015 Jan; 56(1):154-9. PubMed ID: 25510759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of the soft tissue reactions to percutaneous orthopaedic implants.
    Smith TJ; Galm A; Chatterjee S; Wells R; Pedersen S; Parizi AM; Goodship AE; Blunn GW
    J Orthop Res; 2006 Jul; 24(7):1377-83. PubMed ID: 16732606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro comparison of cortical bone temperature generation between traditional sequential drilling and a newly designed step drill in the equine third metacarpal bone.
    Bubeck KA; García-López J; Maranda LS
    Vet Comp Orthop Traumatol; 2009; 22(6):442-7. PubMed ID: 19876527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of hydroxyapatite-coated, titanium-coated, and uncoated tapered external-fixation pins. An in vivo study in sheep.
    Moroni A; Toksvig-Larsen S; Maltarello MC; Orienti L; Stea S; Giannini S
    J Bone Joint Surg Am; 1998 Apr; 80(4):547-54. PubMed ID: 9563384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced fixation with hydroxyapatite coated pins.
    Moroni A; Aspenberg P; Toksvig-Larsen S; Falzarano G; Giannini S
    Clin Orthop Relat Res; 1998 Jan; (346):171-7. PubMed ID: 9577425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Titanium alloy pins versus stainless steel pins in external fixation at the wrist: a randomized prospective study.
    Pieske O; Geleng P; Zaspel J; Piltz S
    J Trauma; 2008 May; 64(5):1275-80. PubMed ID: 18469650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A cadaveric simulation of distal femoral traction shows safety in magnetic resonance imaging.
    Mansour A; Block J; Obremskey W
    J Orthop Trauma; 2009 Oct; 23(9):658-62. PubMed ID: 19897988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. State of the art review: techniques to avoid pin loosening and infection in external fixation.
    Moroni A; Vannini F; Mosca M; Giannini S
    J Orthop Trauma; 2002 Mar; 16(3):189-95. PubMed ID: 11880783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insertional characteristics of three types of transfixation pin taps in third metacarpal bones from equine cadavers.
    Mundy LN; Lescun TB; Main RP; Hall Griffin T
    Am J Vet Res; 2020 Feb; 81(2):172-179. PubMed ID: 31985283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro comparison of the use of two large-animal, centrally threaded, positive-profile transfixation pin designs in the equine third metacarpal bone.
    Morisset S; McClure SR; Hillberry BM; Fisher KE
    Am J Vet Res; 2000 Oct; 61(10):1298-303. PubMed ID: 11039565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cadaveric Study of Bone Tissue Temperature During Pin Site Drilling Using Fluoroptic Thermography.
    Muffly MT; Winegar CD; Miller MC; Altman GT
    J Orthop Trauma; 2018 Aug; 32(8):e315-e319. PubMed ID: 29738397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methodological concerns using intra-cortical pins to measure tibiofemoral kinematics.
    Ramsey DK; Wretenberg PF; Benoit DL; Lamontagne M; Németh G
    Knee Surg Sports Traumatol Arthrosc; 2003 Sep; 11(5):344-9. PubMed ID: 12879227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Holding power of different pin designs and pin insertion methods in avian cortical bone.
    Degernes LA; Roe SC; Abrams CF
    Vet Surg; 1998; 27(4):301-6. PubMed ID: 9662771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of strength at the acrylic-pin interface for variably treated external skeletal fixator pins.
    Brad Case J; Egger EL
    Vet Surg; 2011 Feb; 40(2):211-5. PubMed ID: 21204858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic loading comparison between biodegradable interference screw fixation and biodegradable double cross-pin fixation of human bone-patellar tendon-bone grafts.
    Zantop T; Ruemmler M; Welbers B; Langer M; Weimann A; Petersen W
    Arthroscopy; 2005 Aug; 21(8):934-41. PubMed ID: 16084290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-drilling and self-tapping screws: an ultrastructural study.
    Goelzer JG; Avelar RL; de Oliveira RB; Hubler R; Silveira RL; Machado RA
    J Craniofac Surg; 2010 Mar; 21(2):513-5. PubMed ID: 20216445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Placement of half-pins for supra-acetabular external fixation: an anatomic study.
    Haidukewych GJ; Kumar S; Prpa B
    Clin Orthop Relat Res; 2003 Jun; (411):269-73. PubMed ID: 12782884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in vitro comparison of hollow ground and trocar points on threaded positive-profile external skeletal fixation pins in canine cadaveric bone.
    Marti JM; Roe SC
    Vet Surg; 1999; 28(4):279-86. PubMed ID: 10424708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anodic plasma chemical treatment of titanium Schanz screws reduces pin loosening.
    Neuhoff D; Thompson RE; Frauchiger VM; Ganser A; Steiner A; Ito K
    J Orthop Trauma; 2005 Sep; 19(8):543-50. PubMed ID: 16118562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.