These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7674079)

  • 21. Distraction osteogenesis. A comparison of corticotomy techniques.
    Frierson M; Ibrahim K; Boles M; Boté H; Ganey T
    Clin Orthop Relat Res; 1994 Apr; (301):19-24. PubMed ID: 8156672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gap healing of compact bone.
    Draenert Y; Draenert K
    Scan Electron Microsc; 1980; (4):103-11. PubMed ID: 7256198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of the microstructural anisotropy of distraction osteogenesis in the rabbit tibia.
    Jones KB; Inoue N; Tis JE; McCarthy EF; McHale KA; Chao EY
    Iowa Orthop J; 2005; 25():118-22. PubMed ID: 16089083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biologic model of bone transport distraction osteogenesis and vascular response.
    DeCoster TA; Simpson AH; Wood M; Li G; Kenwright J
    J Orthop Res; 1999 Mar; 17(2):238-45. PubMed ID: 10221841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrically induced osteogenesis: relationship between charge, current density, and the amount of bone formed: introduction of a new cathode concept.
    Brighton CT; Friedenberg ZB; Black J; Esterhai JL; Mitchell JE; Montique F
    Clin Orthop Relat Res; 1981; (161):122-32. PubMed ID: 7307377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Extracorporeal shock waves induce ventral-periosteal new bone formation out of the focus zone--results of an in-vivo animal trial].
    Tischer T; Milz S; Anetzberger H; Müller PE; Wirtz DC; Schmitz C; Ueberle F; Maier M
    Z Orthop Ihre Grenzgeb; 2002; 140(3):281-5. PubMed ID: 12085293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of aging on distraction osteogenesis in the rat.
    Aronson J; Gao GG; Shen XC; McLaren SG; Skinner RA; Badger TM; Lumpkin CK
    J Orthop Res; 2001 May; 19(3):421-7. PubMed ID: 11398855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced gap strains induce changes in bone regeneration during distraction.
    Richards M; Waanders NA; Weiss JA; Bhatia V; Senunas LE; Schaffler MB; Goldstein SA; Goulet JA
    J Biomech Eng; 1999 Jun; 121(3):348-55. PubMed ID: 10396702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of two protocols of periosteal distraction osteogenesis in a rabbit calvaria model.
    Saulacic N; Nakahara K; Iizuka T; Haga-Tsujimura M; Hofstetter W; Scolozzi P
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1121-31. PubMed ID: 26036193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical osteogenesis by low direct current.
    Baranowski TJ; Black J; Brighton CT; Friedenberg ZB
    J Orthop Res; 1983; 1(2):120-8. PubMed ID: 6679856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal and spatial characterization of regenerate bone in the lengthened rabbit tibia.
    Richards M; Goulet JA; Schaffler MB; Goldstein SA
    J Bone Miner Res; 1999 Nov; 14(11):1978-86. PubMed ID: 10571699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastructure of electrically induced osteogenesis in the rabbit medullary canal.
    Brighton CT; Hunt RM
    J Orthop Res; 1986; 4(1):27-36. PubMed ID: 3950806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distraction osteogenesis is inhibited by cancer radiotherapy with Co 60.
    Kesemenli CC; Kaya H; Memisoglu K; Kaya B; Dirier A; Tosun B; Kilinc N
    Clin Invest Med; 2009 Oct; 32(5):E376-82. PubMed ID: 19796579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The osteogenic capacity of tubular and membranous bone periosteum. A qualitative and quantitative experimental study in growing rabbits.
    Uddströmer L
    Scand J Plast Reconstr Surg; 1978; 12(3):195-205. PubMed ID: 368969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal course of bone formation in response to constant direct current stimulation.
    Esterhai JL; Friedenberg ZB; Brighton CT; Black J
    J Orthop Res; 1985; 3(2):137-9. PubMed ID: 3998891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Periosteal and endosteal reaction to reaming and nailing: the possible role of revascularization on the endosteal anchorage of cementless stems.
    Pazzaglia UE
    Biomaterials; 1996 May; 17(10):1009-14. PubMed ID: 8736736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone formation with free periosteum around the root of rabbit tooth.
    Altonen M; Ylipaavalniemi P; Ranta R
    Proc Finn Dent Soc; 1977 Feb; 73(1):32-4. PubMed ID: 846988
    [No Abstract]   [Full Text] [Related]  

  • 38. Bone formation analysis: effect of quantification procedures on the study outcome.
    Lopez-Heredia MA; Bongio M; Cuijpers VM; van Dijk NW; van den Beucken JJ; Wolke JG; Jansen JA
    Tissue Eng Part C Methods; 2012 May; 18(5):369-73. PubMed ID: 22097945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cessation of strain facilitates bone formation in the micromotion chamber implanted in the rabbit tibia.
    Goodman SB; Song Y; Doshi A; Aspenberg P
    Biomaterials; 1994 Sep; 15(11):889-93. PubMed ID: 7833435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inflammation-Induced Osteogenesis in a Rabbit Tibia Model.
    Croes M; Boot W; Kruyt MC; Weinans H; Pouran B; van der Helm YJM; Gawlitta D; Vogely HC; Alblas J; Dhert WJA; Öner FC
    Tissue Eng Part C Methods; 2017 Nov; 23(11):673-685. PubMed ID: 28637383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.