These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
59 related articles for article (PubMed ID: 7674091)
1. The effect of interleukin-6 and soluble interleukin-6 receptor protein on the bone resorptive activity of human osteoclasts generated in vitro. Flanagan AM; Stow MD; Williams R J Pathol; 1995 Jul; 176(3):289-97. PubMed ID: 7674091 [TBL] [Abstract][Full Text] [Related]
2. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Jimi E; Nakamura I; Duong LT; Ikebe T; Takahashi N; Rodan GA; Suda T Exp Cell Res; 1999 Feb; 247(1):84-93. PubMed ID: 10047450 [TBL] [Abstract][Full Text] [Related]
3. Generation of osteoclasts from hemopoietic cells and a multipotential cell line in vitro. Hattersley G; Chambers TJ J Cell Physiol; 1989 Sep; 140(3):478-82. PubMed ID: 2777887 [TBL] [Abstract][Full Text] [Related]
4. The role of 1,25-dihydroxycholecalciferol and prostaglandin E2 in the regulation of human osteoclastic bone resorption in vitro. Flanagan AM; Stow MD; Kendall N; Brace W Int J Exp Pathol; 1995 Feb; 76(1):37-42. PubMed ID: 7734338 [TBL] [Abstract][Full Text] [Related]
5. Effect of bone morphogenetic protein-6 on haemopoietic stem cells and cytokine production in normal human bone marrow stroma. Ahmed N; Sammons J; Carson RJ; Khokher MA; Hassan HT Cell Biol Int; 2001; 25(5):429-35. PubMed ID: 11401330 [TBL] [Abstract][Full Text] [Related]
6. Bone cells required for osteoclastic resorption but not for osteoclastic differentiation. Owens JM; Gallagher AC; Chambers TJ Biochem Biophys Res Commun; 1996 May; 222(2):225-9. PubMed ID: 8670187 [TBL] [Abstract][Full Text] [Related]
11. Modulation of osteoclast-activating factor activity of multiple myeloma bone marrow cells by different interleukin-1 inhibitors. Torcia M; Lucibello M; Vannier E; Fabiani S; Miliani A; Guidi G; Spada O; Dower SK; Sims JE; Shaw AR; Dinarello CA; Garaci E; Cozzolino F Exp Hematol; 1996 Jul; 24(8):868-74. PubMed ID: 8690044 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the cytokine pattern of porcine bone marrow-derived cells treated with 1alpha,25(OH)D. Sipos W; Duvigneau JC; Schmoll F; Exel B; Hofbauer G; Baravalle G; Hartl RT; Dobretsberger M; Pietschmann P J Vet Med A Physiol Pathol Clin Med; 2005 Oct; 52(8):382-7. PubMed ID: 16176565 [TBL] [Abstract][Full Text] [Related]
13. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption. Neale SD; Sabokbar A; Howie DW; Murray DW; Athanasou NA J Orthop Res; 1999 Sep; 17(5):686-94. PubMed ID: 10569477 [TBL] [Abstract][Full Text] [Related]
14. 1,25-Dihydroxyvitamin D3 stimulates rat osteoblastic cells to release a soluble factor that increases osteoclastic bone resorption. McSheehy PM; Chambers TJ J Clin Invest; 1987 Aug; 80(2):425-9. PubMed ID: 3611354 [TBL] [Abstract][Full Text] [Related]
15. Generation of osteoclasts in cultures of rabbit bone marrow and spleen cells. Fuller K; Chambers TJ J Cell Physiol; 1987 Sep; 132(3):441-52. PubMed ID: 3308907 [TBL] [Abstract][Full Text] [Related]
16. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. Kanatani M; Sugimoto T; Kano J; Kanzawa M; Chihara K J Cell Physiol; 2003 Jul; 196(1):180-9. PubMed ID: 12767054 [TBL] [Abstract][Full Text] [Related]