These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 7674120)

  • 1. [The role of nitric oxide and superoxides in the neurotoxicity of glutamate].
    Fagni L; Lafon-Cazal M; Lerner-Natoli M; Rondouin G; Bockaert J
    J Pharm Belg; 1995; 50(2-3):204-12. PubMed ID: 7674120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide and brain hyperexcitability.
    Ferraro G; Sardo P
    In Vivo; 2004; 18(3):357-66. PubMed ID: 15341192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide in mechanisms of brain damage induced by neurotoxic effect of glutamate.
    Bashkatova VG; Rayevsky KS
    Biochemistry (Mosc); 1998 Jul; 63(7):866-73. PubMed ID: 9721339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effect of bradykinin against glutamate neurotoxicity in cultured rat retinal neurons.
    Yasuyoshi H; Kashii S; Zhang S; Nishida A; Yamauchi T; Honda Y; Asano Y; Sato S; Akaike A
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2273-8. PubMed ID: 10892873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons.
    Jiang X; Tian F; Mearow K; Okagaki P; Lipsky RH; Marini AM
    J Neurochem; 2005 Aug; 94(3):713-22. PubMed ID: 16000165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA-dependent superoxide production and neurotoxicity.
    Lafon-Cazal M; Pietri S; Culcasi M; Bockaert J
    Nature; 1993 Aug; 364(6437):535-7. PubMed ID: 7687749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices.
    Molz S; Tharine DC; Decker H; Tasca CI
    Brain Res; 2008 Sep; 1231():113-20. PubMed ID: 18655777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Levels of endogenous adenosine in rat striatum. I. Regulation by ionotropic glutamate receptors, nitric oxide and free radicals.
    Delaney SM; Shepel PN; Geiger JD
    J Pharmacol Exp Ther; 1998 May; 285(2):561-7. PubMed ID: 9580598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of excitatory amino acids in neuropathology].
    Wikinski SI; Acosta GB
    Medicina (B Aires); 1995; 55(4):355-65. PubMed ID: 8728878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemical biology of clinically tolerated NMDA receptor antagonists.
    Chen HS; Lipton SA
    J Neurochem; 2006 Jun; 97(6):1611-26. PubMed ID: 16805772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotoxicity of ammonia and glutamate: molecular mechanisms and prevention.
    Felipo V; Hermenegildo C; Montoliu C; Llansola M; Miñana MD
    Neurotoxicology; 1998; 19(4-5):675-81. PubMed ID: 9745928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors of phospholipase C prevent glutamate neurotoxicity in primary cultures of cerebellar neurons.
    Llansola M; Monfort P; Felipo V
    J Pharmacol Exp Ther; 2000 Mar; 292(3):870-6. PubMed ID: 10688599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haloperidol induces neurotoxicity by the NMDA receptor downstream signaling pathway, alternative from glutamate excitotoxicity.
    Zhuravliova E; Barbakadze T; Natsvlishvili N; Mikeladze DG
    Neurochem Int; 2007 Jun; 50(7-8):976-82. PubMed ID: 17092607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic neuroprotection by bis(7)-tacrine via concurrent blockade of N-methyl-D-aspartate receptors and neuronal nitric-oxide synthase.
    Li W; Xue J; Niu C; Fu H; Lam CS; Luo J; Chan HH; Xue H; Kan KK; Lee NT; Li C; Pang Y; Li M; Tsim KW; Jiang H; Chen K; Li X; Han Y
    Mol Pharmacol; 2007 May; 71(5):1258-67. PubMed ID: 17299028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices.
    Frade JG; Barbosa RM; Laranjinha J
    Hippocampus; 2009 Jul; 19(7):603-11. PubMed ID: 19115375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine release from rat cerebellar astrocytes: autocrine roles for glutamate and nitric oxide?
    Segieth J; Fowler L; Whitton PS; Pearce B
    Neurosci Lett; 2004 Dec; 372(3):262-5. PubMed ID: 15542252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors.
    Marcoli M; Cervetto C; Paluzzi P; Guarnieri S; Raiteri M; Maura G
    Neurochem Int; 2006 Jul; 49(1):12-9. PubMed ID: 16469416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Müller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity.
    Kawasaki A; Otori Y; Barnstable CJ
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3444-50. PubMed ID: 11006237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of selective motor neuronal death after exposure of spinal cord to glutamate: involvement of glutamate-induced nitric oxide in motor neuron toxicity and nonmotor neuron protection.
    Urushitani M; Shimohama S; Kihara T; Sawada H; Akaike A; Ibi M; Inoue R; Kitamura Y; Taniguchi T; Kimura J
    Ann Neurol; 1998 Nov; 44(5):796-807. PubMed ID: 9818936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabotropic glutamate receptors negatively coupled to adenylate cyclase inhibit N-methyl-D-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro.
    Ambrosini A; Bresciani L; Fracchia S; Brunello N; Racagni G
    Mol Pharmacol; 1995 May; 47(5):1057-64. PubMed ID: 7746273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.