These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 7674879)

  • 21. Exhausting stretch-shortening cycle (SSC) exercise causes greater impairment in SSC performance than in pure concentric performance.
    Horita T; Komi PV; Hämäläinen I; Avela J
    Eur J Appl Physiol; 2003 Feb; 88(6):527-34. PubMed ID: 12560951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump.
    Caulfield BM; Garrett M
    Int J Sports Med; 2002 Jan; 23(1):64-8. PubMed ID: 11774069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lower extremity biomechanics during the landing of a stop-jump task.
    Yu B; Lin CF; Garrett WE
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):297-305. PubMed ID: 16378667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinematic, kinetic and EMG patterns during downward squatting.
    Dionisio VC; Almeida GL; Duarte M; Hirata RP
    J Electromyogr Kinesiol; 2008 Feb; 18(1):134-43. PubMed ID: 17029862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of landing maneuvers between male and female college volleyball players.
    Salci Y; Kentel BB; Heycan C; Akin S; Korkusuz F
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):622-8. PubMed ID: 15234487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pre-landing muscle timing and post-landing effects of falling with continuous vision and in blindfold conditions.
    Liebermann DG; Goodman D
    J Electromyogr Kinesiol; 2007 Apr; 17(2):212-27. PubMed ID: 16600637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints.
    Yeow CH; Lee PV; Goh JC
    J Biomech; 2009 Aug; 42(12):1967-73. PubMed ID: 19501826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical differences between unilateral and bilateral landings from a jump: gender differences.
    Pappas E; Hagins M; Sheikhzadeh A; Nordin M; Rose D
    Clin J Sport Med; 2007 Jul; 17(4):263-8. PubMed ID: 17620779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of knee angle and individual flexibility on the flexion-relaxation response of the low back musculature.
    Shin G; Shu Y; Li Z; Jiang Z; Mirka G
    J Electromyogr Kinesiol; 2004 Aug; 14(4):485-94. PubMed ID: 15165598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic postural stability for double-leg drop landing.
    Niu W; Zhang M; Fan Y; Zhao Q
    J Sports Sci; 2013; 31(10):1074-81. PubMed ID: 23351015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot-heel landings.
    Gittoes MJ; Brewin MA; Kerwin DG
    Hum Mov Sci; 2006 Dec; 25(6):775-87. PubMed ID: 16879889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EMG patterns and forces developed during step-down.
    Freedman W; Wannstedt G; Herman R
    Am J Phys Med; 1976 Dec; 55(6):275-90. PubMed ID: 998748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Whole body, long-axis rotational training improves lower extremity neuromuscular control during single leg lateral drop landing and stabilization.
    Nyland J; Burden R; Krupp R; Caborn DN
    Clin Biomech (Bristol, Avon); 2011 May; 26(4):363-70. PubMed ID: 21195516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of age on coordination of stabilization during changing environmental dynamics.
    Holl N; Wuebbenhorst K; Behrens M; Zschorlich V
    Brain Res; 2015 Apr; 1604():98-106. PubMed ID: 25614054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classification and comparison of biomechanical response strategies for accommodating landing impact.
    James CR; Bates BT; Dufek JS
    J Appl Biomech; 2003 May; 19(2):106-18. PubMed ID: 14552354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscular control of landing from unexpected falls in man.
    Jones GM; Watt DG
    J Physiol; 1971 Dec; 219(3):729-37. PubMed ID: 5157599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The response of the lower extremity to impact forces. II. Computerized mechanical impedance measurements.
    Streitman A; Miller A; Pugh J
    Bull Hosp Joint Dis; 1979; 40():120-31. PubMed ID: 554701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knee joint biomechanics and cartilage damage prediction during landing: A hybrid MD-FE-musculoskeletal modeling.
    Adouni M; Alkhatib F; Gouissem A; Faisal TR
    PLoS One; 2023; 18(8):e0287479. PubMed ID: 37535559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lesser magnitudes of lower extremity variability during terminal swing characterizes walking patterns in children with autism.
    Eggleston JD; Harry JR; Cereceres PA; Olivas AN; Chavez EA; Boyle JB; Dufek JS
    Clin Biomech (Bristol, Avon); 2020 Jun; 76():105031. PubMed ID: 32408186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peak vertical ground reaction force during two-leg landing: a systematic review and mathematical modeling.
    Niu W; Feng T; Jiang C; Zhang M
    Biomed Res Int; 2014; 2014():126860. PubMed ID: 25243113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.