BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7674882)

  • 1. Metabolic and perceptual responses during arm and leg ergometry in water and air.
    Robertson R; Goss F; Michael T; Moyna N; Gordon P; Visich P; Kang J; Angelopoulos T; Dasilva S; Metz K
    Med Sci Sports Exerc; 1995 May; 27(5):760-4. PubMed ID: 7674882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating exercise intensity using ratings of perceived exertion during arm and leg ergometry.
    Kang J; Chaloupka EC; Mastrangelo MA; Donnelly MS; Martz WP; Robertson RJ
    Eur J Appl Physiol Occup Physiol; 1998 Aug; 78(3):241-6. PubMed ID: 9721003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of an increasing versus constant crank rate on peak physiological responses during incremental arm crank ergometry.
    Price MJ; Bottoms L; Smith PM; Nicholettos A
    J Sports Sci; 2011 Feb; 29(3):263-9. PubMed ID: 21154011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VO2max responses in separate and combined arm and leg air-braked ergometer exercise.
    Nagle FJ; Richie JP; Giese MD
    Med Sci Sports Exerc; 1984 Dec; 16(6):563-6. PubMed ID: 6513773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of crank rate on physiological responses and exercise efficiency using a range of submaximal workloads during arm crank ergometry.
    Smith PM; Doherty M; Price MJ
    Int J Sports Med; 2006 Mar; 27(3):199-204. PubMed ID: 16541375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic efficiency during arm and leg exercise at the same relative intensities.
    Kang J; Robertson RJ; Goss FL; Dasilva SG; Suminski RR; Utter AC; Zoeller RF; Metz KF
    Med Sci Sports Exerc; 1997 Mar; 29(3):377-82. PubMed ID: 9139177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of crank rate on peak oxygen consumption during arm crank ergometry.
    Smith PM; Price MJ; Doherty M
    J Sports Sci; 2001 Dec; 19(12):955-60. PubMed ID: 11820689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiorespiratory and perceptual responses to self-regulated and imposed submaximal arm-leg ergometry.
    Hill M; Talbot C; Puddiford M; Price M
    Eur J Appl Physiol; 2018 May; 118(5):1011-1019. PubMed ID: 29511919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of cadence and power output upon physiological and biomechanical responses to incremental arm-crank ergometry.
    Price MJ; Collins L; Smith PM; Goss-Sampson M
    Appl Physiol Nutr Metab; 2007 Aug; 32(4):686-92. PubMed ID: 17622283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of the Borg perceived exertion scale for use in semirecumbent ergometry during immersion in water.
    Robertson R; Goss F; Michael T; Moyna N; Gordon P; Visich P; Kang J; Angelopoulos T; Dasilva S; Metz K
    Percept Mot Skills; 1996 Aug; 83(1):3-13. PubMed ID: 8873165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiorespiratory and subjective responses to incremental and constant load ergometry with arms and legs.
    Gutin B; Ang KE; Torrey K
    Arch Phys Med Rehabil; 1988 Jul; 69(7):510-3. PubMed ID: 3389992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy costs of walking on a dual-action treadmill in men and women.
    Butts NK; Knox KM; Foley TS
    Med Sci Sports Exerc; 1995 Jan; 27(1):121-5. PubMed ID: 7898327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of prior heavy arm and leg exercise on VO2 kinetics during heavy leg exercise.
    Koppo K; Jones AM; Bouckaert J
    Eur J Appl Physiol; 2003 Feb; 88(6):593-600. PubMed ID: 12560960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reproducibility of perceptually regulated exercise responses during short-term cycle ergometry.
    Hartshorn JE; Lamb KL
    Int J Sports Med; 2004 Jul; 25(5):362-7. PubMed ID: 15241716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological responses to upper body exercise on an arm and a modified leg ergometer.
    Kang J; Chaloupka EC; Mastrangelo MA; Angelucci J
    Med Sci Sports Exerc; 1999 Oct; 31(10):1453-9. PubMed ID: 10527319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ergometer modification for combined arm-leg use by lower extremity amputees in cardiovascular testing and training.
    Bostom AG; Bates E; Mazzarella N; Block E; Adler J
    Arch Phys Med Rehabil; 1987 Apr; 68(4):244-7. PubMed ID: 3566520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entrainment of breathing in cyclists and non-cyclists during arm and leg exercise.
    Sporer BC; Foster GE; Sheel AW; McKenzie DC
    Respir Physiol Neurobiol; 2007 Jan; 155(1):64-70. PubMed ID: 16580893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses to arm and leg ergometry.
    Eston RG; Brodie DA
    Br J Sports Med; 1986 Mar; 20(1):4-6. PubMed ID: 3697603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excess post-exercise oxygen consumption in untrained men following exercise of equal energy expenditure: comparisons of upper and lower body exercise.
    Lyons S; Richardson M; Bishop P; Smith J; Heath H; Giesen J
    Diabetes Obes Metab; 2007 Nov; 9(6):889-94. PubMed ID: 17924871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pedal rate and power output on rating of perceived exertion during cycle ergometry exercise.
    Hamer M; Boutcher YN; Boutcher SH
    Percept Mot Skills; 2005 Dec; 101(3):827-34. PubMed ID: 16491685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.