BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 7675443)

  • 1. Lack of evidence for the activation of the Ras/Raf mitogenic pathway by 14-3-3 proteins in mammalian cells.
    Suen KL; Bustelo XR; Barbacid M
    Oncogene; 1995 Sep; 11(5):825-31. PubMed ID: 7675443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1.
    Rommel C; Radziwill G; Lovrić J; Noeldeke J; Heinicke T; Jones D; Aitken A; Moelling K
    Oncogene; 1996 Feb; 12(3):609-19. PubMed ID: 8637718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane.
    Leevers SJ; Paterson HF; Marshall CJ
    Nature; 1994 Jun; 369(6479):411-4. PubMed ID: 8196769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergism between two growth regulatory pathways: cooperative transformation of NIH3T3 cells by G alpha 12 and c-raf-1.
    Zhang Y; Saez R; Leal MA; Chan AM
    Oncogene; 1996 Jun; 12(11):2377-83. PubMed ID: 8649778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between Ras and Raf: key regulatory proteins in cellular transformation.
    Marshall M
    Mol Reprod Dev; 1995 Dec; 42(4):493-9. PubMed ID: 8607981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ras-interacting domain of Ral GDP dissociation stimulator like (RGL) reverses v-Ras-induced transformation and Raf-1 activation in NIH3T3 cells.
    Okazaki M; Kishida S; Murai H; Hinoi T; Kikuchi A
    Cancer Res; 1996 May; 56(10):2387-92. PubMed ID: 8625316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Raf/MAPK signaling in Xenopus oocyte extracts by Raf-1-specific peptides.
    Radziwill G; Steinhusen U; Aitken A; Moelling K
    Biochem Biophys Res Commun; 1996 Oct; 227(1):20-6. PubMed ID: 8858097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism.
    Luo Z; Tzivion G; Belshaw PJ; Vavvas D; Marshall M; Avruch J
    Nature; 1996 Sep; 383(6596):181-5. PubMed ID: 8774885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation suppressor activity of C3G is independent of its CDC25-homology domain.
    Guerrero C; Fernandez-Medarde A; Rojas JM; Font de Mora J; Esteban LM; Santos E
    Oncogene; 1998 Feb; 16(5):613-24. PubMed ID: 9482107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ras-independent activation of Rel-family transcription factors by UVB and TPA in cultured keratinocytes.
    Tobin D; Nilsson M; Toftgård R
    Oncogene; 1996 Feb; 12(4):785-93. PubMed ID: 8632900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H-ras and raf-1 cooperate in transformation of NIH3T3 fibroblasts.
    Cuadrado A; Bruder JT; Heidaran MA; App H; Rapp UR; Aaronson SA
    Oncogene; 1993 Sep; 8(9):2443-8. PubMed ID: 8361757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 33-kDa C-terminal domain of Raf-1 protein kinase exhibits a Ras-independent serum- and phorbol ester-induced shift in gel mobility.
    Oláh Z; Ferrier A; Lehel C; Anderson WB
    Biochem Biophys Res Commun; 1995 Sep; 214(2):340-7. PubMed ID: 7545901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative effects of insulin on the activation of the Raf/Mos-dependent MAP kinase cascade in vitellogenic versus postvitellogenic Xenopus oocytes.
    Chesnel F; Bonnec G; Tardivel A; Boujard D
    Dev Biol; 1997 Aug; 188(1):122-33. PubMed ID: 9245517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ornithine decarboxylase induction in transformation by H-Ras and RhoA.
    Shantz LM; Pegg AE
    Cancer Res; 1998 Jul; 58(13):2748-53. PubMed ID: 9661886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a transforming activity suppressing sequence in the c-raf oncogene.
    Ishikawa F; Sakai R; Ochiai M; Takaku F; Sugimura T; Nagao M
    Oncogene; 1988 Dec; 3(6):653-8. PubMed ID: 2577866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the 14.3.3 zeta domains important for self-association and Raf binding.
    Luo ZJ; Zhang XF; Rapp U; Avruch J
    J Biol Chem; 1995 Oct; 270(40):23681-7. PubMed ID: 7559537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain.
    Clark GJ; Drugan JK; Rossman KL; Carpenter JW; Rogers-Graham K; Fu H; Der CJ; Campbell SL
    J Biol Chem; 1997 Aug; 272(34):20990-3. PubMed ID: 9261098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of c-raf phosphoproteins in transformed murine cells.
    Schultz AM; Copeland T; Oroszlan S; Rapp UR
    Oncogene; 1988 Feb; 2(2):187-93. PubMed ID: 3285297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian Ras interacts directly with the serine/threonine kinase Raf.
    Vojtek AB; Hollenberg SM; Cooper JA
    Cell; 1993 Jul; 74(1):205-14. PubMed ID: 8334704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative regulation of Raf activity by binding of 14-3-3 to the amino terminus of Raf in vivo.
    Rommel C; Radziwill G; Moelling K; Hafen E
    Mech Dev; 1997 Jun; 64(1-2):95-104. PubMed ID: 9232600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.