These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 7675783)
1. Molecular dynamics simulation of hydration in myoglobin. Gu W; Schoenborn BP Proteins; 1995 May; 22(1):20-6. PubMed ID: 7675783 [TBL] [Abstract][Full Text] [Related]
2. Understanding water: molecular dynamics simulations of myoglobin. Gu W; Garcia AE; Schoenborn BP Basic Life Sci; 1996; 64():289-98. PubMed ID: 9092458 [TBL] [Abstract][Full Text] [Related]
3. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment. Lounnas V; Pettitt BM Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663 [TBL] [Abstract][Full Text] [Related]
4. A comparative study of carboxy myoglobin in saccharide-water systems by molecular dynamics simulation. Cottone G J Phys Chem B; 2007 Apr; 111(13):3563-9. PubMed ID: 17388507 [TBL] [Abstract][Full Text] [Related]
5. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator. Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632 [TBL] [Abstract][Full Text] [Related]
6. Hydration in proteins observed by high-resolution neutron crystallography. Chatake T; Ostermann A; Kurihara K; Parak FG; Niimura N Proteins; 2003 Feb; 50(3):516-23. PubMed ID: 12557193 [TBL] [Abstract][Full Text] [Related]
7. Correlation between the dynamics of hydrogen bonds and the local density reorganization in the protein hydration layer. Chakraborty S; Bandyopadhyay S J Phys Chem B; 2007 Jul; 111(26):7626-30. PubMed ID: 17559262 [TBL] [Abstract][Full Text] [Related]
8. Distribution function implied dynamics versus residence times and correlations: solvation shells of myoglobin. Lounnas V; Pettitt BM Proteins; 1994 Feb; 18(2):148-60. PubMed ID: 8159664 [TBL] [Abstract][Full Text] [Related]
9. Residence times of water molecules in the hydration sites of myoglobin. Makarov VA; Andrews BK; Smith PE; Pettitt BM Biophys J; 2000 Dec; 79(6):2966-74. PubMed ID: 11106604 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulation of the stability of a 22-residue alpha-helix in water and 30% trifluoroethanol. Van Buuren AR; Berendsen HJ Biopolymers; 1993 Aug; 33(8):1159-66. PubMed ID: 8364151 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulation of glycine zwitterion in aqueous solution. Campo MG J Chem Phys; 2006 Sep; 125(11):114511. PubMed ID: 16999494 [TBL] [Abstract][Full Text] [Related]
12. Hydration dynamics and time scales of coupled water-protein fluctuations. Li T; Hassanali AA; Kao YT; Zhong D; Singer SJ J Am Chem Soc; 2007 Mar; 129(11):3376-82. PubMed ID: 17319669 [TBL] [Abstract][Full Text] [Related]
13. A comparison of neutron diffraction and molecular dynamics structures: hydroxyl group and water molecule orientations in trypsin. McDowell RS; Kossiakoff AA J Mol Biol; 1995 Jul; 250(4):553-70. PubMed ID: 7616573 [TBL] [Abstract][Full Text] [Related]
14. Density functional theory based molecular-dynamics study of aqueous iodide solvation. Heuft JM; Meijer EJ J Chem Phys; 2005 Sep; 123(9):94506. PubMed ID: 16164352 [TBL] [Abstract][Full Text] [Related]
15. High-level expression and deuteration of sperm whale myoglobin. A study of its solvent structure by X-ray and neutron diffraction methods. Shu F; Ramakrishnan V; Schoenborn BP Basic Life Sci; 1996; 64():309-23. PubMed ID: 9031516 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulation of equine infectious anemia virus Tat protein in water and in 40% trifluoroethanol. Sticht H; Willbold D; Rösch P J Biomol Struct Dyn; 1994 Aug; 12(1):019-36. PubMed ID: 7848558 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin. Cottone G; Giuffrida S; Ciccotti G; Cordone L Proteins; 2005 May; 59(2):291-302. PubMed ID: 15723350 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics study of water penetration in staphylococcal nuclease. Damjanović A; García-Moreno B; Lattman EE; García AE Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206 [TBL] [Abstract][Full Text] [Related]
19. Cooperative motions of protein and hydration water molecules: molecular dynamics study of scytalone dehydratase. Okimoto N; Nakamura T; Suenaga A; Futatsugi N; Hirano Y; Yamaguchi I; Ebisuzaki T J Am Chem Soc; 2004 Oct; 126(40):13132-9. PubMed ID: 15469312 [TBL] [Abstract][Full Text] [Related]
20. The role of residue 50 and hydration water molecules in homeodomain DNA recognition. Duan J; Nilsson L Eur Biophys J; 2002 Jul; 31(4):306-16. PubMed ID: 12122477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]