These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 7677259)

  • 1. Structure of the embryonic primate spinal cord at the closure of the first reflex arc.
    Knyihar-Csillik E; Csillik B; Rakic P
    Anat Embryol (Berl); 1995 Jun; 191(6):519-40. PubMed ID: 7677259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of glomerular synaptic complexes and immunohistochemical differentiation in the superficial dorsal horn of the embryonic primate spinal cord.
    Knyihar-Csillik E; Rakic P; Csillik B
    Anat Embryol (Berl); 1999 Feb; 199(2):125-48. PubMed ID: 9930620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of the cervical spinal cord of the mouse embryo. II. A Golgi analysis of sensory, commissural, and association cell differentiation.
    Wentworth LE
    J Comp Neurol; 1984 Jan; 222(1):96-115. PubMed ID: 6699204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological aspects of formation of neuronal pathways in the chick spinal cord--Golgi and electron microscopic studies.
    Kanemitsu A; Matsuda S; Kobayashi Y
    Acta Neurochir Suppl (Wien); 1987; 41():78-84. PubMed ID: 3481942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of contralateral commissural projections in the embryonic rodent spinal cord.
    Kadison SR; Kaprielian Z
    J Comp Neurol; 2004 May; 472(4):411-22. PubMed ID: 15065116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient synapses in the embryonic primate spinal cord.
    Knyihar E; Csillik B; Rakic P
    Science; 1978 Dec; 202(4373):1206-9. PubMed ID: 103200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathfinding by growth cones of commissural interneurons in the chick embryo spinal cord: a light and electron microscopic study.
    Yaginuma H; Homma S; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Feb; 304(1):78-102. PubMed ID: 2016414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guidance of commissural growth cones at the floor plate in embryonic rat spinal cord.
    Bovolenta P; Dodd J
    Development; 1990 Jun; 109(2):435-47. PubMed ID: 2205466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ipsi- and contralateral commissural growth cones react differently to the cellular environment of the ventral zebrafish spinal cord.
    Bernhardt RR
    J Comp Neurol; 1994 Dec; 350(1):122-32. PubMed ID: 7860796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an identified spinal commissural interneuron population in an amniote: neurons of the avian Hofmann nuclei.
    Eide AL; Glover JC
    J Neurosci; 1996 Sep; 16(18):5749-61. PubMed ID: 8795630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier.
    Snow DM; Steindler DA; Silver J
    Dev Biol; 1990 Apr; 138(2):359-76. PubMed ID: 1690673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptogenesis in the chick cervical cord and possible initial central pathways from dorsal root fibers to motor neurons--Golgi and electron microscopic studies.
    Kanemitsu A; Matsuda S
    Neurosci Lett; 1984 Jul; 48(1):1-6. PubMed ID: 6472732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Birinyi A; Viszokay K; Wéber I; Kiehn O; Antal M
    J Comp Neurol; 2003 Jul; 461(4):429-40. PubMed ID: 12746860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fine structure of the spinal cord in human embryos and early fetuses.
    Wozniak W; O'Rahilly R; Olszewska B
    J Hirnforsch; 1980; 21(1):101-24. PubMed ID: 7381194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord.
    DiFiglia M; Aronin N; Leeman SE
    Neuroscience; 1982 May; 7(5):1127-39. PubMed ID: 6180349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathfinding by identified growth cones in the spinal cord of zebrafish embryos.
    Kuwada JY; Bernhardt RR; Chitnis AB
    J Neurosci; 1990 Apr; 10(4):1299-308. PubMed ID: 2329378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The generation of neurons involved in an early reflex pathway of embryonic mouse spinal cord.
    Sims TJ; Vaughn JE
    J Comp Neurol; 1979 Feb; 183(4):707-19. PubMed ID: 762268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course of dorsal root axon regeneration into transplants of fetal spinal cord: an electron microscopic study.
    Itoh Y; Sugawara T; Kowada M; Tessler A
    Exp Neurol; 1993 Sep; 123(1):133-46. PubMed ID: 8405273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation of commissural axons in vitro in response to a floor plate-derived chemoattractant.
    Placzek M; Tessier-Lavigne M; Jessell T; Dodd J
    Development; 1990 Sep; 110(1):19-30. PubMed ID: 2081459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.