These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7678200)

  • 1. Modulation of ion channels underlying excitation-secretion coupling in identified lactotrophs and gonadotrophs.
    Oxford GS; Tse A
    Biol Reprod; 1993 Jan; 48(1):1-7. PubMed ID: 7678200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording.
    Einhorn LC; Gregerson KA; Oxford GS
    J Neurosci; 1991 Dec; 11(12):3727-37. PubMed ID: 1683898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guanine nucleotide binding proteins mediate D2 dopamine receptor activation of a potassium channel in rat lactotrophs.
    Einhorn LC; Oxford GS
    J Physiol; 1993 Mar; 462():563-78. PubMed ID: 8392573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelin activates large-conductance K+ channels in rat lactotrophs: reversal by long-term exposure to dopamine agonist.
    Kanyicska B; Freeman ME; Dryer SE
    Endocrinology; 1997 Aug; 138(8):3141-53. PubMed ID: 9231761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+-activated K+ channels in gonadotropin-releasing hormone-stimulated mouse gonadotrophs.
    Waring DW; Turgeon JL
    Endocrinology; 2009 May; 150(5):2264-72. PubMed ID: 19106218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel calcium-activated apamin-insensitive potassium current in pituitary gonadotrophs.
    Vergara L; Rojas E; Stojilkovic SS
    Endocrinology; 1997 Jul; 138(7):2658-64. PubMed ID: 9202201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dopamine on voltage-dependent potassium currents in identified rat lactotroph cells.
    Lledo PM; Legendre P; Zhang J; Israel JM; Vincent JD
    Neuroendocrinology; 1990 Dec; 52(6):545-55. PubMed ID: 2149427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of hormone secretion on activation-inactivation kinetics of voltage-sensitive Ca2+ channels in pituitary gonadotrophs.
    Stojilković SS; Iida T; Virmani MA; Izumi S; Rojas E; Catt KJ
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8855-9. PubMed ID: 2174166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patch clamp recordings of single ion channel activation by gonadotrophin-releasing hormone in ovine pituitary gonadotrophs.
    Mason WT; Waring DW
    Neuroendocrinology; 1986; 43(2):205-19. PubMed ID: 2425283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inward membrane currents and electrophysiological responses to GnRH in ovine gonadotropes.
    Heyward PM; Chen C; Clarke IJ
    Neuroendocrinology; 1995 Jun; 61(6):609-21. PubMed ID: 7544876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of ionic channels in rat anterior pituitary cells.
    Van Goor F; Zivadinovic D; Stojilkovic SS
    Mol Endocrinol; 2001 Jul; 15(7):1222-36. PubMed ID: 11435620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes.
    Tse A; Hille B
    Science; 1992 Jan; 255(5043):462-4. PubMed ID: 1734523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of voltage-gated Na+ and Ca2+ channels in gonadotropin-releasing hormone-induced membrane potential changes in identified rat gonadotropes.
    Tse A; Hille B
    Endocrinology; 1993 Apr; 132(4):1475-81. PubMed ID: 8384989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional expression of the dopamine-activated K(+) current in lactotrophs during the estrous cycle in female rats: correlation with prolactin secretory responses.
    Gregerson KA
    Endocrine; 2003; 20(1-2):67-74. PubMed ID: 12668870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of prolactin release on coupling between Ca(2+) mobilization and voltage-gated Ca(2+) influx pathways in rat lactotrophs.
    Tomić M; Andric SA; Stojilkovic SS
    Endocrine; 2003; 20(1-2):45-52. PubMed ID: 12668867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substance P increases intracellular Ca2+ in individual rat pituitary lactotrophs, somatotrophs, and gonadotrophs.
    Mau SE; Witt MR; Saermark T; Vilhardt H
    Mol Cell Endocrinol; 1997 Feb; 126(2):193-201. PubMed ID: 9089657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium and potassium currents involved in action potential propagation in normal bovine lactotrophs.
    Cobbett P; Ingram CD; Mason WT
    J Physiol; 1987 Nov; 392():273-99. PubMed ID: 2451724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in gonadotropin-releasing hormone-induced calcium signaling between melatonin-sensitive and melatonin-insensitive neonatal rat gonadotrophs.
    Zemková H; Vanecek J
    Endocrinology; 2000 Mar; 141(3):1017-26. PubMed ID: 10698178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apamin-sensitive potassium channels mediate agonist-induced oscillations of membrane potential in pituitary gonadotrophs.
    Kukuljan M; Stojilković SS; Rojas E; Catt KJ
    FEBS Lett; 1992 Apr; 301(1):19-22. PubMed ID: 1333410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct neuropeptide Y-induced modulation of gonadotrope intracellular calcium transients and gonadotropin secretion.
    Shangold GA; Miller RJ
    Endocrinology; 1990 May; 126(5):2336-42. PubMed ID: 2109684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.