BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 7678217)

  • 21. Melatonin regulates the phosphorylation of CREB in ovine pars tuberalis.
    McNulty S; Ross AW; Barrett P; Hastings MH; Morgan PJ
    J Neuroendocrinol; 1994 Oct; 6(5):523-32. PubMed ID: 7827622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The inhibitory action of melatonin in the ovine pars tuberalis is not dependent on changes in plasma membrane potential.
    McNulty S; Schurov IL; Morgan PJ; Hastings MH
    J Endocrinol; 1995 Jun; 145(3):471-8. PubMed ID: 7636431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homologous down-regulation of growth hormone-releasing hormone receptor messenger ribonucleic acid levels.
    Aleppo G; Moskal SF; De Grandis PA; Kineman RD; Frohman LA
    Endocrinology; 1997 Mar; 138(3):1058-65. PubMed ID: 9048609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vasoactive intestinal polypeptide and alpha 2-adrenoceptor agonists regulate adenosine 3',5'-monophosphate accumulation and melatonin release in chick pineal cell cultures.
    Pratt BL; Takahashi JS
    Endocrinology; 1989 Nov; 125(5):2375-84. PubMed ID: 2477231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hormone-independent activation of adenylate cyclase in large steroidogenic ovine luteal cells does not result in increased progesterone secretion.
    Hoyer PB; Fitz TA; Niswender GD
    Endocrinology; 1984 Feb; 114(2):604-8. PubMed ID: 6537809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of Forskolin and Melatonin on Cyclic AMP Generation in Pars Tuberalis Cells of Ovine Pituitary.
    Morgan PJ; Lawson W; Davidson G
    J Neuroendocrinol; 1991 Oct; 3(5):497-501. PubMed ID: 19215498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for RGS4 modulation of melatonin and thyrotrophin signalling pathways in the pars tuberalis.
    Dupré SM; Dardente H; Birnie MJ; Loudon AS; Lincoln GA; Hazlerigg DG
    J Neuroendocrinol; 2011 Aug; 23(8):725-32. PubMed ID: 21623959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro acute and prolonged effects of melatonin on purified rat Leydig cell steroidogenesis and adenosine 3',5'-monophosphate production.
    Valenti S; Guido R; Giusti M; Giordano G
    Endocrinology; 1995 Dec; 136(12):5357-62. PubMed ID: 7588282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indirect inhibition by bradykinin of cyclic AMP generation in isolated rat glomeruli and mesangial cells.
    Bascands JL; Pecher C; Girolami JP
    Mol Pharmacol; 1993 Oct; 44(4):818-26. PubMed ID: 7694069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociation of antiproliferative and antihormonal effects of the somatostatin analog octreotide on 7315b pituitary tumor cells.
    Hofland LJ; van Koetsveld PM; Wouters N; Waaijers M; Reubi JC; Lamberts SW
    Endocrinology; 1992 Aug; 131(2):571-7. PubMed ID: 1322274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melatonin receptors couple through a cholera toxin-sensitive mechanism to inhibit cyclic AMP in the ovine pituitary.
    Morgan PJ; Barrett P; Hazlerigg D; Milligan G; Lawson W; MacLean A; Davidson G
    J Neuroendocrinol; 1995 May; 7(5):361-9. PubMed ID: 7550282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the pituitary-specific transcription factor GHF-1/Pit-1 messenger ribonucleic acid levels by growth hormone-secretagogues in rat anterior pituitary cells in monolayer culture.
    Soto JL; Castrillo JL; Dominguez F; Dieguez C
    Endocrinology; 1995 Sep; 136(9):3863-70. PubMed ID: 7649093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells.
    Barovsky K; Pedone C; Brooker G
    Mol Pharmacol; 1984 Mar; 25(2):256-60. PubMed ID: 6321948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ovine pars tuberalis secretes a factor(s) that regulates gene expression in both lactotropic and nonlactotropic pituitary cells.
    Morgan PJ; Webster CA; Mercer JG; Ross AW; Hazlerigg DG; MacLean A; Barrett P
    Endocrinology; 1996 Sep; 137(9):4018-26. PubMed ID: 8756579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen peroxide evokes antisteroidogenic and antigonadotropic actions in human granulosa luteal cells.
    Endo T; Aten RF; Leykin L; Behrman HR
    J Clin Endocrinol Metab; 1993 Feb; 76(2):337-42. PubMed ID: 7679398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of responsiveness at D2 dopamine receptors by receptor desensitization and adenylyl cyclase sensitization.
    Bates MD; Senogles SE; Bunzow JR; Liggett SB; Civelli O; Caron MG
    Mol Pharmacol; 1991 Jan; 39(1):55-63. PubMed ID: 1846220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Melatonin inhibits pituitary adenylyl cyclase-activating polypeptide-induced increase of cyclic AMP accumulation and [Ca2+]i in cultured cells of neonatal rat pituitary.
    Slanar O; Pelisek V; Vanecek J
    Neurochem Int; 2000 Mar; 36(3):213-9. PubMed ID: 10676855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melatonin receptors and signal transduction in photorefractory Siberian hamsters (Phodopus sungorus).
    Weaver DR; Provencio I; Carlson LL; Reppert SM
    Endocrinology; 1991 Feb; 128(2):1086-92. PubMed ID: 1846576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in binding of iodomelatonin to membranes of Leydig cells and steroidogenesis after prolonged in vitro exposure to melatonin.
    Valenti S; Fazzuoli L; Giordano G; Giusti M
    Int J Androl; 2001 Apr; 24(2):80-6. PubMed ID: 11298841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus.
    Niles LP; Hashemi F
    Cell Mol Neurobiol; 1990 Dec; 10(4):553-8. PubMed ID: 1709064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.