These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7678754)

  • 1. Incorporation and release of fluorescein isothiocyanate-linked dextrans from a bead-formed macroporous hydrophilic matrix with potential for sustained release.
    Atkins TW; McCallion RL; Tighe BJ
    Biomaterials; 1993; 14(1):16-20. PubMed ID: 7678754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature incorporation of bovine serum albumin into a bead formed macroporous hydrophilic polymer matrix with potential for sustained release.
    Atkins TW; McCallion RL; Tighe BJ
    J Biomater Sci Polym Ed; 1992; 3(3):261-74. PubMed ID: 1610736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The incorporation and sustained release of bioactive insulin from a bead-formed macroporous hydrogel matrix.
    Atkins TW; McCallion RL; Tighe BJ
    J Biomed Mater Res; 1995 Mar; 29(3):291-8. PubMed ID: 7615580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.
    Mao S; Xu J; Cai C; Germershaus O; Schaper A; Kissel T
    Int J Pharm; 2007 Apr; 334(1-2):137-48. PubMed ID: 17196348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The incorporation and release of glucose oxidase and interleukin 2 from a bead formed macroporous hydrophilic polymer matrix.
    Atkins TW; McCallion RL; Tighe BJ
    J Biomater Sci Polym Ed; 1994; 6(7):651-9. PubMed ID: 7873516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of a macromolecular drug from alginate-impregnated microspheres.
    Chretien C; Chaumeil JC
    Int J Pharm; 2005 Nov; 304(1-2):18-28. PubMed ID: 16165334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled release of macromolecules from PLA microspheres: using porous structure topology.
    Ehtezazi T; Washington C
    J Control Release; 2000 Sep; 68(3):361-72. PubMed ID: 10974390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro release behavior of dextran-methacrylate hydrogels using doxorubicin and other model compounds.
    Kim SH; Chu CC
    J Biomater Appl; 2000 Jul; 15(1):23-46. PubMed ID: 10972158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and evaluation of once-a-day injectable microspheres of interferon alpha in rats.
    Yoshikawa Y; Komuta Y; Nishihara T; Itoh Y; Yoshikawa H; Takada K
    J Drug Target; 1999; 6(6):449-61. PubMed ID: 10937290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of in vitro release of a model nucleoside deoxyuridine from crosslinked insoluble collagen and collagen-gelatin microspheres.
    Chowdhury DK; Mitra AK
    Int J Pharm; 1999 Dec; 193(1):113-22. PubMed ID: 10581428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres.
    Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H
    Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the enhancement effect of n-octyl-beta-D-thioglucoside on the transdermal penetration of fluorescein isothiocyanate-labeled dextrans and the molecular weight dependence of water-soluble penetrants through stripped skin.
    Ogiso T; Paku T; Iwaki M; Tanino T
    J Pharm Sci; 1994 Dec; 83(12):1676-81. PubMed ID: 7534349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of permeability of FD-4 through porous poly (2-hydroxyethyl methacrylate) membrane by multiple linear regression and artificial neural network.
    Yanagawa F; Onuki Y; Morishita M; Takayama K
    Pharmazie; 2009 May; 64(5):311-5. PubMed ID: 19530441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of fractal geometry on solute permeation through porous poly (2-hydroxyethyl methacrylate) membranes.
    Yanagawa F; Onuki Y; Morishita M; Takayama K
    J Control Release; 2006 Jan; 110(2):395-399. PubMed ID: 16332400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of macromolecules from a degradable polyanhydride matrix.
    Dang W; Saltzman WM
    J Biomater Sci Polym Ed; 1994; 6(3):297-311. PubMed ID: 7527250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Janus microspheres for enhanced enteral drug delivery: Preparation and orientated attachment to a Caco-2 monolayer.
    Matsumoto A; Watanabe C; Murakami M
    Drug Discov Ther; 2019; 13(6):343-353. PubMed ID: 31956233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of biodegradable poly(propylene fumarate)/poly(lactic-co-glycolic acid) blend microspheres. II. Controlled drug release and microsphere degradation.
    Kempen DH; Lu L; Zhu X; Kim C; Jabbari E; Dhert WJ; Currier BL; Yaszemski MJ
    J Biomed Mater Res A; 2004 Aug; 70(2):293-302. PubMed ID: 15227674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of degree of substitution of HES-HEMA on the release of incorporated drug models from corresponding hydrogels.
    Schwoerer AD; Harling S; Scheibe K; Menzel H; Daniels R
    Eur J Pharm Biopharm; 2009 Nov; 73(3):351-6. PubMed ID: 19683570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of nanoparticulate drug delivery systems based on thiolated poly(acrylic acid).
    Thaurer MH; Deutel B; Schlocker W; Bernkop-Schnürch A
    J Microencapsul; 2009 May; 26(3):187-94. PubMed ID: 18946801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preparation of cationic dextran microspheres loaded with tetanus toxoid and study on the mechanism of protein loading].
    Zheng CL; Liu XQ; Zhu JB; Zhao YN
    Yao Xue Xue Bao; 2010 Sep; 45(9):1183-7. PubMed ID: 21351577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.