These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 7679072)
21. Use of a sandwich enzyme-linked immunosorbent assay strategy to study mechanisms of G protein-coupled receptor assembly. Jakubik J; Wess J J Biol Chem; 1999 Jan; 274(3):1349-58. PubMed ID: 9880506 [TBL] [Abstract][Full Text] [Related]
22. Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. Hamdan FF; Ward SD; Siddiqui NA; Bloodworth LM; Wess J Biochemistry; 2002 Jun; 41(24):7647-58. PubMed ID: 12056896 [TBL] [Abstract][Full Text] [Related]
23. Chimeric m2/m3 muscarinic receptors: role of carboxyl terminal receptor domains in selectivity of ligand binding and coupling to phosphoinositide hydrolysis. Wess J; Bonner TI; Brann MR Mol Pharmacol; 1990 Dec; 38(6):872-7. PubMed ID: 2174507 [TBL] [Abstract][Full Text] [Related]
24. Binding characteristics and functional G protein coupling of muscarinic acetylcholine receptors in rat duodenum smooth muscle membranes. Liebmann C; Nawrath S; Schnittler M; Schubert H; Jakobs KH Naunyn Schmiedebergs Arch Pharmacol; 1992 Jan; 345(1):7-15. PubMed ID: 1538792 [TBL] [Abstract][Full Text] [Related]
25. Scanning mutagenesis identifies amino acid side chains in transmembrane domain 5 of the M(1) muscarinic receptor that participate in binding the acetyl methyl group of acetylcholine. Allman K; Page KM; Curtis CA; Hulme EC Mol Pharmacol; 2000 Jul; 58(1):175-84. PubMed ID: 10860940 [TBL] [Abstract][Full Text] [Related]
26. Structure-function of muscarinic receptor coupling to G proteins. Random saturation mutagenesis identifies a critical determinant of receptor affinity for G proteins. Burstein ES; Spalding TA; Hill-Eubanks D; Brann MR J Biol Chem; 1995 Feb; 270(7):3141-6. PubMed ID: 7852396 [TBL] [Abstract][Full Text] [Related]
27. Site-directed mutagenesis on the m2 muscarinic acetylcholine receptor: the significance of Tyr403 in the binding of agonists and functional coupling. Vogel WK; Sheehan DM; Schimerlik MI Mol Pharmacol; 1997 Dec; 52(6):1087-94. PubMed ID: 9415719 [TBL] [Abstract][Full Text] [Related]
29. Conformational changes that occur during M3 muscarinic acetylcholine receptor activation probed by the use of an in situ disulfide cross-linking strategy. Ward SD; Hamdan FF; Bloodworth LM; Wess J J Biol Chem; 2002 Jan; 277(3):2247-57. PubMed ID: 11698401 [TBL] [Abstract][Full Text] [Related]
30. Sequestration of muscarinic acetylcholine receptor m2 subtypes. Facilitation by G protein-coupled receptor kinase (GRK2) and attenuation by a dominant-negative mutant of GRK2. Tsuga H; Kameyama K; Haga T; Kurose H; Nagao T J Biol Chem; 1994 Dec; 269(51):32522-7. PubMed ID: 7798253 [TBL] [Abstract][Full Text] [Related]
31. Human gastric mucosa expresses glandular M3 subtype of muscarinic receptors. Pfeiffer A; Hanack C; Kopp R; Tacke R; Moser U; Mutschler E; Lambrecht G; Herawi M Dig Dis Sci; 1990 Dec; 35(12):1468-72. PubMed ID: 2253531 [TBL] [Abstract][Full Text] [Related]
32. Structure of a G-protein-coupling domain of a muscarinic receptor predicted by random saturation mutagenesis. Hill-Eubanks D; Burstein ES; Spalding TA; Bräuner-Osborne H; Brann MR J Biol Chem; 1996 Feb; 271(6):3058-65. PubMed ID: 8621701 [TBL] [Abstract][Full Text] [Related]
33. [3H]N-methylscopolamine binding studies reveal M2 and M3 muscarinic receptor subtypes on cerebellar granule cells in primary culture. Alonso R; Didier M; Soubrie P J Neurochem; 1990 Jul; 55(1):334-7. PubMed ID: 2355226 [TBL] [Abstract][Full Text] [Related]
34. Site-directed mutagenesis of the rat m1 muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function. Savarese TM; Wang CD; Fraser CM J Biol Chem; 1992 Jun; 267(16):11439-48. PubMed ID: 1317867 [TBL] [Abstract][Full Text] [Related]
35. Affinities of muscarinic drugs for [3H]N-methylscopolamine (NMS) and [3H]oxotremorine (OXO) binding to a mixture of M1-M4 muscarinic receptors: use of NMS/OXO-M ratios to group compounds into potential agonist, partial agonist, and antagonist classes. Sharif NA; Williams GW; DeSantis LM Neurochem Res; 1995 Jun; 20(6):669-74. PubMed ID: 7566362 [TBL] [Abstract][Full Text] [Related]
36. Site-directed mutagenesis of the m2 muscarinic acetylcholine receptor. Analysis of the role of N-glycosylation in receptor expression and function. van Koppen CJ; Nathanson NM J Biol Chem; 1990 Dec; 265(34):20887-92. PubMed ID: 2249995 [TBL] [Abstract][Full Text] [Related]
37. Different antagonist binding properties of rat pancreatic and cardiac muscarinic receptors. Waelbroeck M; Camus J; Winand J; Christophe J Life Sci; 1987 Nov; 41(19):2235-40. PubMed ID: 3118122 [TBL] [Abstract][Full Text] [Related]
38. The role of membrane proximal threonine residues conserved among guanine-nucleotide-binding-protein-coupled receptors in internalization of the m4 muscarinic acetylcholine receptor. Van Koppen CJ; Lenz W; Nunes JP; Zhang C; Schmidt M; Jakobs KH Eur J Biochem; 1995 Dec; 234(2):536-41. PubMed ID: 8536700 [TBL] [Abstract][Full Text] [Related]
39. Deletion analysis of the m4 muscarinic acetylcholine receptor. Molecular determinants for activation of but not coupling to the Gi guanine-nucleotide-binding regulatory protein regulate receptor internalization. Van Koppen CJ; Sell A; Lenz W; Jakobs KH Eur J Biochem; 1994 Jun; 222(2):525-31. PubMed ID: 8020490 [TBL] [Abstract][Full Text] [Related]
40. Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the m2 muscarinic acetylcholine receptor. Leppik RA; Miller RC; Eck M; Paquet JL Mol Pharmacol; 1994 May; 45(5):983-90. PubMed ID: 8190113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]