BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7679074)

  • 1. Cell-autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin early development.
    Ghiglione C; Lhomond G; Lepage T; Gache C
    EMBO J; 1993 Jan; 12(1):87-96. PubMed ID: 7679074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres.
    Hurley DL; Angerer LM; Angerer RC
    Development; 1989 Jul; 106(3):567-79. PubMed ID: 2480880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos.
    Ghiglione C; Emily-Fenouil F; Chang P; Gache C
    Development; 1996 Oct; 122(10):3067-74. PubMed ID: 8898220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Range and stability of cell fate determination in isolated sea urchin blastomeres.
    Livingston BT; Wilt FH
    Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid.
    Lepage T; Ghiglione C; Gache C
    Development; 1992 Jan; 114(1):147-63. PubMed ID: 1339338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.
    Emily-Fenouil F; Ghiglione C; Lhomond G; Lepage T; Gache C
    Development; 1998 Jul; 125(13):2489-98. PubMed ID: 9609832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres.
    Kenny AP; Kozlowski D; Oleksyn DW; Angerer LM; Angerer RC
    Development; 1999 Dec; 126(23):5473-83. PubMed ID: 10556071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maternal mRNA encoding the orphan steroid receptor SpCOUP-TF is localized in sea urchin eggs.
    Vlahou A; Gonzalez-Rimbau M; Flytzanis CN
    Development; 1996 Feb; 122(2):521-6. PubMed ID: 8625803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare maternal mRNAs code for regulatory proteins that control lineage-specific gene expression in the sea urchin embryo.
    Cutting AE; Höög C; Calzone FJ; Britten RJ; Davidson EH
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7953-7. PubMed ID: 1700421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.
    Livingston BT; Wilt FH
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3669-73. PubMed ID: 2726745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered cell fate in LiCl-treated sea urchin embryos.
    Nocente-McGrath C; McIsaac R; Ernst SG
    Dev Biol; 1991 Oct; 147(2):445-50. PubMed ID: 1717326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maternal control of early patterning in sea urchin embryos.
    Kipryushina YO; Yakovlev KV
    Differentiation; 2020; 113():28-37. PubMed ID: 32371341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unequal cleavage in leech embryos: zygotic transcription is required for correct spindle orientation in subset of early blastomeres.
    Bissen ST; Smith CM
    Development; 1996 Feb; 122(2):599-606. PubMed ID: 8625811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation.
    Klein SL; Moody SA
    Development; 1989 Jul; 106(3):599-610. PubMed ID: 2557198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
    Ransick A; Rast JP; Minokawa T; Calestani C; Davidson EH
    Dev Biol; 2002 Jun; 246(1):132-47. PubMed ID: 12027439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phorbol esters alter cell fate during development of sea urchin embryos.
    Livingston BT; Wilt FH
    J Cell Biol; 1992 Dec; 119(6):1641-8. PubMed ID: 1469053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially regulated SpEts4 transcription factor activity along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Development; 1999 Apr; 126(8):1729-37. PubMed ID: 10079234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.