These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 7679074)

  • 21. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental potential of muscle cell progenitors and the myogenic factor SUM-1 in the sea urchin embryo.
    Venuti JM; Gan L; Kozlowski MT; Klein WH
    Mech Dev; 1993 Apr; 41(1):3-14. PubMed ID: 8389581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling.
    Peng CJ; Wikramanayake AH
    PLoS One; 2013; 8(11):e80693. PubMed ID: 24236196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo.
    Yuh CH; Davidson EH
    Development; 1996 Apr; 122(4):1069-82. PubMed ID: 8620834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of abnormal differentiation of Paracentrotus lividus fertilized eggs contamined by zincethylenebisdithiocarbamate.
    Alia EE; Fighetti MA; Alia F; Giannasi FA
    Eur J Basic Appl Histochem; 1991; 35(2):195-201. PubMed ID: 1768730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does protein synthesis decline in lithium-treated sea urchin embryos because RNA synthesis is inhibited?
    Wolcott DL
    Exp Cell Res; 1982 Feb; 137(2):427-31. PubMed ID: 7056296
    [No Abstract]   [Full Text] [Related]  

  • 28. The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development.
    Ettensohn CA
    Sci STKE; 2006 Nov; 2006(361):pe48. PubMed ID: 17106077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis.
    Croce J; Lhomond G; Gache C
    Mech Dev; 2003 May; 120(5):561-72. PubMed ID: 12782273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.
    Izumi-Kurotani A; Kiyomoto M
    Adv Space Biol Med; 2003; 9():83-99. PubMed ID: 14631630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Dev Biol; 1997 Jul; 187(1):71-8. PubMed ID: 9224675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polarized distribution of L-type calcium channels in early sea urchin embryos.
    Dale B; Yazaki I; Tosti E
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C822-5. PubMed ID: 9316401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial expression of the hatching enzyme gene in the sea urchin embryo.
    Lepage T; Sardet C; Gache C
    Dev Biol; 1992 Mar; 150(1):23-32. PubMed ID: 1537434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maternal factors regulating symmetry breaking and dorsal-ventral axis formation in the sea urchin embryo.
    Molina MD; Lepage T
    Curr Top Dev Biol; 2020; 140():283-316. PubMed ID: 32591077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of cell fate in sea urchin embryos.
    Livingston BT; Wilt FH
    Bioessays; 1990 Mar; 12(3):115-9. PubMed ID: 2182005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maternal control of a zygotic patterning gene in Caenorhabditis elegans.
    Ahringer J
    Development; 1997 Oct; 124(19):3865-9. PubMed ID: 9367442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear and cytoplasmic changes in early development of lithium treated sea urchin embryos.
    Immers J
    Acta Embryol Exp (Palermo); 1973; 2():205-21. PubMed ID: 4127773
    [No Abstract]   [Full Text] [Related]  

  • 40. Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay.
    Kiyomoto M; Morinaga S; Ooi N
    Ecotoxicology; 2010 Mar; 19(3):563-70. PubMed ID: 20020201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.