These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 7679100)
1. Enzymatic analysis of two HIV-1 reverse transcriptase mutants with mutations in carboxyl-terminal amino acid residues conserved among retroviral ribonucleases H. Volkmann S; Wöhrl BM; Tisdale M; Moelling K J Biol Chem; 1993 Feb; 268(4):2674-83. PubMed ID: 7679100 [TBL] [Abstract][Full Text] [Related]
2. Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition. Lim D; Orlova M; Goff SP J Virol; 2002 Aug; 76(16):8360-73. PubMed ID: 12134040 [TBL] [Abstract][Full Text] [Related]
3. Mutations of a conserved residue within HIV-1 ribonuclease H affect its exo- and endonuclease activities. Wöhrl BM; Volkmann S; Moelling K J Mol Biol; 1991 Aug; 220(3):801-18. PubMed ID: 1714505 [TBL] [Abstract][Full Text] [Related]
4. Defects in primer-template binding, processive DNA synthesis, and RNase H activity associated with chimeric reverse transcriptases having the murine leukemia virus polymerase domain joined to Escherichia coli RNase H. Guo J; Wu W; Yuan ZY; Post K; Crouch RJ; Levin JG Biochemistry; 1995 Apr; 34(15):5018-29. PubMed ID: 7536033 [TBL] [Abstract][Full Text] [Related]
5. Mutagenesis of the conserved aspartic acid 443, glutamic acid 478, asparagine 494, and aspartic acid 498 residues in the ribonuclease H domain of p66/p51 human immunodeficiency virus type I reverse transcriptase. Expression and biochemical analysis. Mizrahi V; Brooksbank RL; Nkabinde NC J Biol Chem; 1994 Jul; 269(30):19245-9. PubMed ID: 7518454 [TBL] [Abstract][Full Text] [Related]
6. Truncating alpha-helix E' of p66 human immunodeficiency virus reverse transcriptase modulates RNase H function and impairs DNA strand transfer. Ghosh M; Howard KJ; Cameron CE; Benkovic SJ; Hughes SH; Le Grice SF J Biol Chem; 1995 Mar; 270(13):7068-76. PubMed ID: 7535765 [TBL] [Abstract][Full Text] [Related]
7. Coupling of reverse transcriptase and RNase H during HIV-1 replication. Wöhrl BM; Moelling K Behring Inst Mitt; 1991 Jul; (89):100-7. PubMed ID: 1718256 [TBL] [Abstract][Full Text] [Related]
8. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase. Gao HQ; Sarafianos SG; Arnold E; Hughes SH J Mol Biol; 1999 Dec; 294(5):1097-113. PubMed ID: 10600369 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic properties of two mutants of reverse transcriptase of human immunodeficiency virus type 1 (tyrosine 181-->isoleucine and tyrosine 188-->leucine), resistant to nonnucleoside inhibitors. Loya S; Bakhanashvili M; Tal R; Hughes SH; Boyer PL; Hizi A AIDS Res Hum Retroviruses; 1994 Aug; 10(8):939-46. PubMed ID: 7529032 [TBL] [Abstract][Full Text] [Related]
10. Mutagenesis of cysteine 280 of the reverse transcriptase of human immunodeficiency virus type-1: the effects on the ribonuclease H activity. Sevilya Z; Loya S; Duvshani A; Adir N; Hizi A J Mol Biol; 2003 Mar; 327(1):19-30. PubMed ID: 12614605 [TBL] [Abstract][Full Text] [Related]
11. A large deletion in the connection subdomain of murine leukemia virus reverse transcriptase or replacement of the RNase H domain with Escherichia coli RNase H results in altered polymerase and RNase H activities. Post K; Guo J; Kalman E; Uchida T; Crouch RJ; Levin JG Biochemistry; 1993 Jun; 32(21):5508-17. PubMed ID: 7684924 [TBL] [Abstract][Full Text] [Related]
12. The effects of cysteine mutations on the catalytic activities of the reverse transcriptase of human immunodeficiency virus type-1. Loya S; Tal R; Hughes SH; Hizi A J Biol Chem; 1992 Jul; 267(20):13879-83. PubMed ID: 1378433 [TBL] [Abstract][Full Text] [Related]
13. Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase. Stahl SJ; Kaufman JD; Vikić-Topić S; Crouch RJ; Wingfield PT Protein Eng; 1994 Sep; 7(9):1103-8. PubMed ID: 7530360 [TBL] [Abstract][Full Text] [Related]
14. RNase H activity: structure, specificity, and function in reverse transcription. Schultz SJ; Champoux JJ Virus Res; 2008 Jun; 134(1-2):86-103. PubMed ID: 18261820 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase. Boyer PL; Stenbak CR; Clark PK; Linial ML; Hughes SH J Virol; 2004 Jun; 78(12):6112-21. PubMed ID: 15163704 [TBL] [Abstract][Full Text] [Related]
16. Disruption of a salt bridge between Asp 488 and Lys 465 in HIV-1 reverse transcriptase alters its proteolytic processing and polymerase activity. Goobar-Larsson L; Bäckbro K; Unge T; Bhikhabhai R; Vrang L; Zhang H; Orvell C; Strandberg B; Oberg B Virology; 1993 Oct; 196(2):731-8. PubMed ID: 7690504 [TBL] [Abstract][Full Text] [Related]
17. Substitution of Asp114 or Arg116 in the fingers domain of moloney murine leukemia virus reverse transcriptase affects interactions with the template-primer resulting in decreased processivity. Gu J; Villanueva RA; Snyder CS; Roth MJ; Georgiadis MM J Mol Biol; 2001 Jan; 305(2):341-59. PubMed ID: 11124910 [TBL] [Abstract][Full Text] [Related]
19. An active recombinant p15 RNase H domain is functionally distinct from the RNase H domain associated with human immunodeficiency virus type 1 reverse transcriptase. Evans DB; Fan N; Swaney SM; Tarpley WG; Sharma SK J Biol Chem; 1994 Aug; 269(34):21741-7. PubMed ID: 7520442 [TBL] [Abstract][Full Text] [Related]
20. Rapid kinetic analysis of a point mutant of HIV-1 reverse transcriptase lacking ribonuclease H activity. Dudding LR; Mizrahi V Biochemistry; 1993 Jun; 32(23):6116-20. PubMed ID: 7685188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]