These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 7679123)
1. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. Strausfeld NJ; Weltzien P; Barth FG J Comp Neurol; 1993 Feb; 328(1):63-75. PubMed ID: 7679123 [TBL] [Abstract][Full Text] [Related]
2. Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. Strausfeld NJ; Barth FG J Comp Neurol; 1993 Feb; 328(1):43-62. PubMed ID: 7679122 [TBL] [Abstract][Full Text] [Related]
3. Visual pathways in the brain of the jumping spider Marpissa muscosa. Steinhoff POM; Uhl G; Harzsch S; Sombke A J Comp Neurol; 2020 Jul; 528(11):1883-1902. PubMed ID: 31960432 [TBL] [Abstract][Full Text] [Related]
4. The synganglion of the jumping spider Marpissa muscosa (Arachnida: Salticidae): Insights from histology, immunohistochemistry and microCT analysis. Steinhoff PO; Sombke A; Liedtke J; Schneider JM; Harzsch S; Uhl G Arthropod Struct Dev; 2017 Mar; 46(2):156-170. PubMed ID: 27845202 [TBL] [Abstract][Full Text] [Related]
5. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. Strausfeld NJ; Okamura JY J Comp Neurol; 2007 Jan; 500(1):166-88. PubMed ID: 17099891 [TBL] [Abstract][Full Text] [Related]
6. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits. Douglass JK; Strausfeld NJ J Comp Neurol; 2003 Mar; 457(4):326-44. PubMed ID: 12561074 [TBL] [Abstract][Full Text] [Related]
7. Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body. Doeffinger C; Hartenstein V; Stollewerk A J Comp Neurol; 2010 Jul; 518(13):2612-32. PubMed ID: 20503430 [TBL] [Abstract][Full Text] [Related]
8. Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). Ehmer B; Gronenberg W J Comp Neurol; 2002 Sep; 451(4):362-73. PubMed ID: 12210130 [TBL] [Abstract][Full Text] [Related]
9. Visual perception of motion in a hunting spider. Neuhofer D; Machan R; Schmid A J Exp Biol; 2009 Sep; 212(17):2819-23. PubMed ID: 19684216 [TBL] [Abstract][Full Text] [Related]
10. Neural organization of ocellar pathways in the cockroach brain. Mizunami M J Comp Neurol; 1995 Feb; 352(3):458-68. PubMed ID: 7706561 [TBL] [Abstract][Full Text] [Related]
11. Descending neurons supplying the neck and flight motor of Diptera: organization and neuroanatomical relationships with visual pathways. Strausfeld NJ; Gronenberg W J Comp Neurol; 1990 Dec; 302(4):954-72. PubMed ID: 1707069 [TBL] [Abstract][Full Text] [Related]
12. Active sensing in a freely walking spider: look where to go. Schmid A; Trischler C J Insect Physiol; 2011 Apr; 57(4):494-500. PubMed ID: 21281645 [TBL] [Abstract][Full Text] [Related]
13. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. Otsuna H; Ito K J Comp Neurol; 2006 Aug; 497(6):928-58. PubMed ID: 16802334 [TBL] [Abstract][Full Text] [Related]
14. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. Sinakevitch I; Douglass JK; Scholtz G; Loesel R; Strausfeld NJ J Comp Neurol; 2003 Dec; 467(2):150-72. PubMed ID: 14595766 [TBL] [Abstract][Full Text] [Related]
15. Evolution of the central complex in the arthropod brain with respect to the visual system. Homberg U Arthropod Struct Dev; 2008 Sep; 37(5):347-62. PubMed ID: 18502176 [TBL] [Abstract][Full Text] [Related]
16. Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly. Douglass JK; Strausfeld NJ J Comp Neurol; 1998 Jun; 396(1):84-104. PubMed ID: 9623889 [TBL] [Abstract][Full Text] [Related]
17. Descending neurons supplying the neck and flight motor of Diptera: physiological and anatomical characteristics. Gronenberg W; Strausfeld NJ J Comp Neurol; 1990 Dec; 302(4):973-91. PubMed ID: 1707070 [TBL] [Abstract][Full Text] [Related]
18. Morphology of higher-order ocellar interneurons in the cockroach brain. Mizunami M J Comp Neurol; 1995 Nov; 362(2):293-304. PubMed ID: 8576440 [TBL] [Abstract][Full Text] [Related]
19. Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. Homberg U; Hofer S; Pfeiffer K; Gebhardt S J Comp Neurol; 2003 Aug; 462(4):415-30. PubMed ID: 12811810 [TBL] [Abstract][Full Text] [Related]
20. Neuroarchitecture of the arcuate body in the brain of the spider Cupiennius salei (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry and its evolutionary implications. Loesel R; Seyfarth EA; Bräunig P; Agricola HJ Arthropod Struct Dev; 2011 May; 40(3):210-20. PubMed ID: 21256976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]