BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7679123)

  • 1. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei.
    Strausfeld NJ; Weltzien P; Barth FG
    J Comp Neurol; 1993 Feb; 328(1):63-75. PubMed ID: 7679123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei.
    Strausfeld NJ; Barth FG
    J Comp Neurol; 1993 Feb; 328(1):43-62. PubMed ID: 7679122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual pathways in the brain of the jumping spider Marpissa muscosa.
    Steinhoff POM; Uhl G; Harzsch S; Sombke A
    J Comp Neurol; 2020 Jul; 528(11):1883-1902. PubMed ID: 31960432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synganglion of the jumping spider Marpissa muscosa (Arachnida: Salticidae): Insights from histology, immunohistochemistry and microCT analysis.
    Steinhoff PO; Sombke A; Liedtke J; Schneider JM; Harzsch S; Uhl G
    Arthropod Struct Dev; 2017 Mar; 46(2):156-170. PubMed ID: 27845202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents.
    Strausfeld NJ; Okamura JY
    J Comp Neurol; 2007 Jan; 500(1):166-88. PubMed ID: 17099891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 2003 Mar; 457(4):326-44. PubMed ID: 12561074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body.
    Doeffinger C; Hartenstein V; Stollewerk A
    J Comp Neurol; 2010 Jul; 518(13):2612-32. PubMed ID: 20503430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera).
    Ehmer B; Gronenberg W
    J Comp Neurol; 2002 Sep; 451(4):362-73. PubMed ID: 12210130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual perception of motion in a hunting spider.
    Neuhofer D; Machan R; Schmid A
    J Exp Biol; 2009 Sep; 212(17):2819-23. PubMed ID: 19684216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural organization of ocellar pathways in the cockroach brain.
    Mizunami M
    J Comp Neurol; 1995 Feb; 352(3):458-68. PubMed ID: 7706561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Descending neurons supplying the neck and flight motor of Diptera: organization and neuroanatomical relationships with visual pathways.
    Strausfeld NJ; Gronenberg W
    J Comp Neurol; 1990 Dec; 302(4):954-72. PubMed ID: 1707069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active sensing in a freely walking spider: look where to go.
    Schmid A; Trischler C
    J Insect Physiol; 2011 Apr; 57(4):494-500. PubMed ID: 21281645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways.
    Otsuna H; Ito K
    J Comp Neurol; 2006 Aug; 497(6):928-58. PubMed ID: 16802334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa.
    Sinakevitch I; Douglass JK; Scholtz G; Loesel R; Strausfeld NJ
    J Comp Neurol; 2003 Dec; 467(2):150-72. PubMed ID: 14595766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the central complex in the arthropod brain with respect to the visual system.
    Homberg U
    Arthropod Struct Dev; 2008 Sep; 37(5):347-62. PubMed ID: 18502176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 1998 Jun; 396(1):84-104. PubMed ID: 9623889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending neurons supplying the neck and flight motor of Diptera: physiological and anatomical characteristics.
    Gronenberg W; Strausfeld NJ
    J Comp Neurol; 1990 Dec; 302(4):973-91. PubMed ID: 1707070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology of higher-order ocellar interneurons in the cockroach brain.
    Mizunami M
    J Comp Neurol; 1995 Nov; 362(2):293-304. PubMed ID: 8576440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria.
    Homberg U; Hofer S; Pfeiffer K; Gebhardt S
    J Comp Neurol; 2003 Aug; 462(4):415-30. PubMed ID: 12811810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroarchitecture of the arcuate body in the brain of the spider Cupiennius salei (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry and its evolutionary implications.
    Loesel R; Seyfarth EA; Bräunig P; Agricola HJ
    Arthropod Struct Dev; 2011 May; 40(3):210-20. PubMed ID: 21256976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.