These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 7679398)
21. Facilitative actions of the protein kinase-C effector system on hormonally stimulated adenosine 3',5'-monophosphate production by swine luteal cells. Wheeler MB; Veldhuis JD Endocrinology; 1989 Nov; 125(5):2414-20. PubMed ID: 2551649 [TBL] [Abstract][Full Text] [Related]
22. Development-related effects of recombinant activin on steroid synthesis in rat granulosa cells. Miró F; Smyth CD; Hillier SG Endocrinology; 1991 Dec; 129(6):3388-94. PubMed ID: 1659530 [TBL] [Abstract][Full Text] [Related]
23. Adenosine amplifies follicle-stimulating hormone action in granulosa cells and luteinizing hormone action in luteal cells of rat and human ovaries. Polan ML; DeCherney AH; Haseltine FP; Mezer HC; Behrman HR J Clin Endocrinol Metab; 1983 Feb; 56(2):288-94. PubMed ID: 6296184 [TBL] [Abstract][Full Text] [Related]
24. Reversal by human chorionic gonadotropin of the inhibitory effect of clomiphene on progesterone production by granulosa-luteal cells in culture. Lavy G; Diamond MP; Polan ML Int J Fertil; 1989; 34(5):359-62. PubMed ID: 2571598 [TBL] [Abstract][Full Text] [Related]
25. Interleukin-1 alpha and -beta modulation of luteinized human granulosa cell oestrogen and progesterone biosynthesis. Best CL; Hill JA Hum Reprod; 1995 Dec; 10(12):3206-10. PubMed ID: 8822445 [TBL] [Abstract][Full Text] [Related]
26. Stimulation of progesterone synthesis in luteinized human granulosa cells by human chorionic gonadotropin and 8-bromo-adenosine 3',5'-monophosphate: the effect of low density lipoprotein. Soto E; Silavin SL; Tureck RW; Strauss JF J Clin Endocrinol Metab; 1984 May; 58(5):831-7. PubMed ID: 6707189 [TBL] [Abstract][Full Text] [Related]
27. Direct actions of 17 beta-estradiol on progesterone production by highly differentiated porcine granulosa cells in vitro. II. Regulatory interactions of estradiol with luteinizing hormone and cyclic nucleotides. Veldhuis JD; Klase PA; Hammond JM Endocrinology; 1981 Aug; 109(2):433-42. PubMed ID: 6166465 [TBL] [Abstract][Full Text] [Related]
28. Concerted action of human chorionic gonadotropin and norepinephrine on intracellular-free calcium in human granulosa-lutein cells: evidence for the presence of a functional alpha-adrenergic receptor. Föhr KJ; Mayerhofer A; Sterzik K; Rudolf M; Rosenbusch B; Gratzl M J Clin Endocrinol Metab; 1993 Feb; 76(2):367-73. PubMed ID: 8381798 [TBL] [Abstract][Full Text] [Related]
29. Human chorionic gonadotropin and prolactin modulation of early luteal function and luteinizing hormone receptor-binding activity in cultured human granulosa-luteal cells. Polan ML; Laufer N; Dlugi AM; Tarlatzis BC; Haseltine FP; DeCherney AH; Behrman HR J Clin Endocrinol Metab; 1984 Oct; 59(4):773-9. PubMed ID: 6090495 [TBL] [Abstract][Full Text] [Related]
30. Evidence that hydrogen peroxide blocks hormone-sensitive cholesterol transport into mitochondria of rat luteal cells. Behrman HR; Aten RF Endocrinology; 1991 Jun; 128(6):2958-66. PubMed ID: 2036971 [TBL] [Abstract][Full Text] [Related]
31. Mechanisms for the antigonadotropic action of the ovarian gonadotropin-releasing hormone-binding inhibitor protein/histone H2A on ovarian cells. Margolin Y; Aten RF; Behrman HR Biol Reprod; 1992 Jun; 46(6):1021-6. PubMed ID: 1327198 [TBL] [Abstract][Full Text] [Related]
32. Steroid hormone release in cultures of pig corpus luteum and granulosa cells: effect of LH, hCG, PRL and estradiol. Gregoraszczuk E Endocrinol Exp; 1983 Mar; 17(1):59-68. PubMed ID: 6603350 [TBL] [Abstract][Full Text] [Related]
33. Steroidogenesis in luteinized granulosa cell cultures varies with follicular priming regimen. Lobb DK; Soliman SR; Daya S; Younglai EV Hum Reprod; 1998 Aug; 13(8):2064-7. PubMed ID: 9756269 [TBL] [Abstract][Full Text] [Related]
34. Progesterone secretion by luteinizing human granulosa cells: a possible cAMP-dependent but PKA-independent mechanism involved in its regulation. Chin EC; Abayasekara DR J Endocrinol; 2004 Oct; 183(1):51-60. PubMed ID: 15525573 [TBL] [Abstract][Full Text] [Related]
35. Effects of estradiol and an aromatase inhibitor on progesterone production in human cultured luteal cells. Endo T; Henmi H; Goto T; Kitajima Y; Kiya T; Nishikawa A; Manase K; Yamamoto H; Kudo R Gynecol Endocrinol; 1998 Feb; 12(1):29-34. PubMed ID: 9526707 [TBL] [Abstract][Full Text] [Related]
36. Clomiphene and tamoxifen inhibit progesterone synthesis in granulosa cells: comparison with estradiol. Sgarlata CS; Mikhail G; Hertelendy F Endocrinology; 1984 Jun; 114(6):2032-8. PubMed ID: 6202494 [TBL] [Abstract][Full Text] [Related]
37. The calcium-mobilizing agent, thapsigargin, inhibits progesterone production in rat luteal cells by a calcium-independent mechanism. Pepperell JR; Behrman HR Endocrinology; 1990 Oct; 127(4):1818-24. PubMed ID: 1698148 [TBL] [Abstract][Full Text] [Related]
38. Loss of luteotropic prostaglandin E plays an important role in the regulation of luteolysis in women. Nio-Kobayashi J; Kudo M; Sakuragi N; Iwanaga T; Duncan WC Mol Hum Reprod; 2017 May; 23(5):271-281. PubMed ID: 28333263 [TBL] [Abstract][Full Text] [Related]
39. In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics. Meidan R; Girsh E; Blum O; Aberdam E Biol Reprod; 1990 Dec; 43(6):913-21. PubMed ID: 2291928 [TBL] [Abstract][Full Text] [Related]
40. Adenylate cyclase in the corpus luteum of the rhesus monkey. III. Changes in basal and gonadotropin-sensitive activities during the luteal phase of the menstrual cycle. Eyster KM; Ottobre JS; Stouffer RL Endocrinology; 1985 Oct; 117(4):1571-7. PubMed ID: 2992915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]