These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 7679501)

  • 41. Ion channels for the mechano-electrical transduction and efferent synapse of the hair cell.
    Ohmori H
    Adv Biophys; 1992; 28():1-30. PubMed ID: 1279949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells.
    Hudspeth AJ; Choe Y; Mehta AD; Martin P
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11765-72. PubMed ID: 11050207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Homeostatic enhancement of sensory transduction.
    Milewski AR; Ó Maoiléidigh D; Salvi JD; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6794-E6803. PubMed ID: 28760949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A virtual hair cell, II: evaluation of mechanoelectric transduction parameters.
    Nam JH; Cotton JR; Grant W
    Biophys J; 2007 Mar; 92(6):1929-37. PubMed ID: 17208974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lipid bilayer mediates ion-channel cooperativity in a model of hair-cell mechanotransduction.
    Gianoli F; Risler T; Kozlov AS
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E11010-E11019. PubMed ID: 29217640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activation and adaptation of transducer currents in turtle hair cells.
    Crawford AC; Evans MG; Fettiplace R
    J Physiol; 1989 Dec; 419():405-34. PubMed ID: 2621635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of the receptor current in bullfrog saccular hair cells.
    Corey DP; Hudspeth AJ
    J Neurosci; 1983 May; 3(5):962-76. PubMed ID: 6601694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical noise enhances signal transmission in the bullfrog sacculus.
    Indresano AA; Frank JE; Middleton P; Jaramillo F
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):363-70. PubMed ID: 14690054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phantom tones and suppressive masking by active nonlinear oscillation of the hair-cell bundle.
    Barral J; Martin P
    Proc Natl Acad Sci U S A; 2012 May; 109(21):E1344-51. PubMed ID: 22556264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tip-link integrity and mechanical transduction in vertebrate hair cells.
    Assad JA; Shepherd GM; Corey DP
    Neuron; 1991 Dec; 7(6):985-94. PubMed ID: 1764247
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sensory coding in the saccule. Patch clamp study of ionic conductances in isolated cells.
    Steinacker A; Perez L
    Ann N Y Acad Sci; 1992 May; 656():27-48. PubMed ID: 1376097
    [No Abstract]   [Full Text] [Related]  

  • 52. Morphological and electrophysiological properties of hair cells in the bullfrog utriculus.
    Baird RA
    Ann N Y Acad Sci; 1992 May; 656():12-26. PubMed ID: 1599137
    [No Abstract]   [Full Text] [Related]  

  • 53. Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity.
    Nadrowski B; Martin P; Jülicher F
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12195-200. PubMed ID: 15302928
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Friction from Transduction Channels' Gating Affects Spontaneous Hair-Bundle Oscillations.
    Barral J; Jülicher F; Martin P
    Biophys J; 2018 Jan; 114(2):425-436. PubMed ID: 29401440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Myosin-VIIa and transduction channel tension.
    Gillespie PG
    Nat Neurosci; 2002 Jan; 5(1):3-4. PubMed ID: 11753408
    [No Abstract]   [Full Text] [Related]  

  • 56. Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear.
    Markin VS; Hudspeth AJ
    Annu Rev Biophys Biomol Struct; 1995; 24():59-83. PubMed ID: 7663129
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics.
    van Netten SM; Kros CJ
    Proc Biol Sci; 2000 Sep; 267(1455):1915-23. PubMed ID: 11052545
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels.
    Choe Y; Magnasco MO; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15321-6. PubMed ID: 9860967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Localisation of the mechanotransducer channels in mammalian cochlear hair cells provides clues to their gating.
    Furness DN; Hackney CM; Evans MG
    J Physiol; 2010 Mar; 588(Pt 5):765-72. PubMed ID: 20026619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Have we found the tip link, transduction channel, and gating spring of the hair cell?
    Gillespie PG; Dumont RA; Kachar B
    Curr Opin Neurobiol; 2005 Aug; 15(4):389-96. PubMed ID: 16009547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.