These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 7679895)

  • 1. Subcellular-membrane characterization of [3H]ryanodine-binding sites in smooth muscle.
    Zhang ZD; Kwan CY; Daniel EE
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):259-66. PubMed ID: 7679895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological characterization of the specific binding of [3H]ryanodine to rat brain microsomal membranes.
    Zimanyi I; Pessah IN
    Brain Res; 1991 Oct; 561(2):181-91. PubMed ID: 1666327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of [3H]ryanodine receptors and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum.
    Zimányi I; Pessah IN
    J Pharmacol Exp Ther; 1991 Mar; 256(3):938-46. PubMed ID: 1848635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ryanodine binding to sarcoplasmic reticulum membrane; comparison between cardiac and skeletal muscle.
    Michalak M; Dupraz P; Shoshan-Barmatz V
    Biochim Biophys Acta; 1988 Apr; 939(3):587-94. PubMed ID: 3355834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel.
    Chu A; Díaz-Muñoz M; Hawkes MJ; Brush K; Hamilton SL
    Mol Pharmacol; 1990 May; 37(5):735-41. PubMed ID: 1692609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides.
    Pessah IN; Stambuk RA; Casida JE
    Mol Pharmacol; 1987 Mar; 31(3):232-8. PubMed ID: 2436032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation and inhibition of [3H]ryanodine binding to sarcoplasmic reticulum from malignant hyperthermia susceptible pigs.
    Mickelson JR; Litterer LA; Jacobson BA; Louis CF
    Arch Biochem Biophys; 1990 Apr; 278(1):251-7. PubMed ID: 2321964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of multiple [3H]ryanodine binding sites on the Ca2+ release channel of sarcoplasmic reticulum from skeletal and cardiac muscle: evidence for a sequential mechanism in ryanodine action.
    Pessah IN; Zimanyi I
    Mol Pharmacol; 1991 May; 39(5):679-89. PubMed ID: 1851961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of subcellular fractions and distribution profiles of transport components involved in Ca(2+) homeostasis in rat vas deferens.
    Scaramello CB; Cunha VM; Rodriguez JB; Noël F
    J Pharmacol Toxicol Methods; 2002; 47(2):93-8. PubMed ID: 12459148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calcium-ryanodine receptor complex of skeletal and cardiac muscle.
    Pessah IN; Waterhouse AL; Casida JE
    Biochem Biophys Res Commun; 1985 Apr; 128(1):449-56. PubMed ID: 3985981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthraquinone-sensitized Ca2+ release channel from rat cardiac sarcoplasmic reticulum: possible receptor-mediated mechanism of doxorubicin cardiomyopathy.
    Pessah IN; Durie EL; Schiedt MJ; Zimanyi I
    Mol Pharmacol; 1990 Apr; 37(4):503-14. PubMed ID: 2157959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron(II) is a modulator of ryanodine-sensitive calcium channels of cardiac muscle sarcoplasmic reticulum.
    Kim E; Giri SN; Pessah IN
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):57-66. PubMed ID: 7530865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of [3H]ryanodine binding to the rabbit cerebral microsomes.
    Kawai T; Ishii Y; Imaizumi Y; Watanabe M
    Brain Res; 1991 Feb; 540(1-2):331-4. PubMed ID: 2054628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of high-affinity ryanodine-binding sites of rat liver endoplasmic reticulum. Differences between liver and skeletal muscle.
    Shoshan-Barmatz V; Pressley TA; Higham S; Kraus-Friedmann N
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):41-6. PubMed ID: 2039482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agonist-activated, ryanodine-sensitive, IP3-insensitive Ca2+ release channels in longitudinal muscle of intestine.
    Kuemmerle JF; Murthy KS; Makhlouf GM
    Am J Physiol; 1994 May; 266(5 Pt 1):C1421-31. PubMed ID: 7515567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of [(3)H]ryanodine binding sites in mammalian lung.
    Wild JS; Giri SN; Moore R; Pessah IN
    Arch Biochem Biophys; 2000 Jul; 379(1):109-18. PubMed ID: 10864448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the ryanodine receptor-Ca2+ release channel from the thoracic tissues of the lepidopteran insect Heliothis virescens.
    Scott-Ward TS; Dunbar SJ; Windass JD; Williams AJ
    J Membr Biol; 2001 Jan; 179(2):127-41. PubMed ID: 11220363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High affinity binding of 9-[3H]methyl-7-bromoeudistomin D to the caffeine-binding site of skeletal muscle sarcoplasmic reticulum.
    Fang YI; Adachi M; Kobayashi J; Ohizumi Y
    J Biol Chem; 1993 Sep; 268(25):18622-5. PubMed ID: 7689557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a Ca2+ binding and regulatory site in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum.
    Chen SR; Zhang L; MacLennan DH
    J Biol Chem; 1992 Nov; 267(32):23318-26. PubMed ID: 1385418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum.
    Favero TG; Zable AC; Abramson JJ
    J Biol Chem; 1995 Oct; 270(43):25557-63. PubMed ID: 7592726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.