These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7679938)

  • 1. Selective changes in the microorganization of the human epileptogenic neocortex revealed by parvalbumin immunoreactivity.
    DeFelipe J; Garcia Sola R; Marco P; del Río MR; Pulido P; Ramón y Cajal S
    Cereb Cortex; 1993; 3(1):39-48. PubMed ID: 7679938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered synaptic circuitry in the human temporal neocortex removed from epileptic patients.
    Marco P; DeFelipe J
    Exp Brain Res; 1997 Mar; 114(1):1-10. PubMed ID: 9125446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex.
    Del Río MR; DeFelipe J
    J Comp Neurol; 1994 Apr; 342(3):389-408. PubMed ID: 7517410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architectural (Type IA) focal cortical dysplasia and parvalbumin immunostaining in temporal lobe epilepsy.
    Garbelli R; Meroni A; Magnaghi G; Beolchi MS; Ferrario A; Tassi L; Bramerio M; Spreafico R
    Epilepsia; 2006 Jun; 47(6):1074-8. PubMed ID: 16822257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory neurons in the human epileptogenic temporal neocortex. An immunocytochemical study.
    Marco P; Sola RG; Pulido P; Alijarde MT; Sánchez A; Ramón y Cajal S; DeFelipe J
    Brain; 1996 Aug; 119 ( Pt 4)():1327-47. PubMed ID: 8813295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex: implications for epilepsy.
    Marco P; Sola RG; Ramón y Cajal S; DeFelipe J
    Brain Res Bull; 1997; 44(1):47-66. PubMed ID: 9288831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parvalbumin and calbindin-D28k immunocytochemistry in human neocortical epileptic foci.
    Ferrer I; Oliver B; Russi A; Casas R; Rivera R
    J Neurol Sci; 1994 May; 123(1-2):18-25. PubMed ID: 8064311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex.
    Aronica E; Redeker S; Boer K; Spliet WG; van Rijen PC; Gorter JA; Troost D
    Epilepsy Res; 2007 Apr; 74(1):33-44. PubMed ID: 17267178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microanatomy of the dysplastic neocortex from epileptic patients.
    Alonso-Nanclares L; Garbelli R; Sola RG; Pastor J; Tassi L; Spreafico R; DeFelipe J
    Brain; 2005 Jan; 128(Pt 1):158-73. PubMed ID: 15548558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal nitric oxide synthase expression in resected epileptic dysplastic neocortex.
    González-Martínez JA; Möddel G; Ying Z; Prayson RA; Bingaman WE; Najm IM
    J Neurosurg; 2009 Feb; 110(2):343-9. PubMed ID: 19245288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chandelier cells and epilepsy.
    DeFelipe J
    Brain; 1999 Oct; 122 ( Pt 10)():1807-22. PubMed ID: 10506085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Densities of parvalbumin-immunoreactive neurons in non-malformed hippocampal sclerosis-temporal neocortex and in cortical dysplasias.
    Zamecnik J; Krsek P; Druga R; Marusic P; Benes V; Tichy M; Komarek V
    Brain Res Bull; 2006 Feb; 68(6):474-81. PubMed ID: 16459206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus.
    Wittner L; Eross L; Czirják S; Halász P; Freund TF; Maglóczky Z
    Brain; 2005 Jan; 128(Pt 1):138-52. PubMed ID: 15548550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous inhibitory circuits in cortical tubers of human tuberous sclerosis complex associated with refractory epilepsy: aberrant expression of parvalbumin and calbindin-D28k in dysplastic cortex.
    Valencia I; Legido A; Yelin K; Khurana D; Kothare SV; Katsetos CD
    J Child Neurol; 2006 Dec; 21(12):1058-63. PubMed ID: 17156698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.
    Arellano JI; Muñoz A; Ballesteros-Yáñez I; Sola RG; DeFelipe J
    Brain; 2004 Jan; 127(Pt 1):45-64. PubMed ID: 14534159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different parvalbumin and GABA expression in human epileptogenic focal cortical dysplasia.
    Medici V; Rossini L; Deleo F; Tringali G; Tassi L; Cardinale F; Bramerio M; de Curtis M; Garbelli R; Spreafico R
    Epilepsia; 2016 Jul; 57(7):1109-19. PubMed ID: 27173597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilocarpine-induced status epilepticus causes acute interneuron loss and hyper-excitatory propagation in rat insular cortex.
    Chen S; Fujita S; Koshikawa N; Kobayashi M
    Neuroscience; 2010 Mar; 166(1):341-53. PubMed ID: 20018232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicular glutamate transporter 1 immunostaining in the normal and epileptic human cerebral cortex.
    Alonso-Nanclares L; De Felipe J
    Neuroscience; 2005; 134(1):59-68. PubMed ID: 15961236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory circuits in human dysplastic tissue.
    Spreafico R; Tassi L; Colombo N; Bramerio M; Galli C; Garbelli R; Ferrario A; Lo Russo G; Munari C
    Epilepsia; 2000; 41 Suppl 6():S168-73. PubMed ID: 10999539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microzonal decreases in the immunostaining for non-NMDA ionotropic excitatory amino acid receptor subunits GluR 2/3 and GluR 5/6/7 in the human epileptogenic neocortex.
    DeFelipe J; Huntley GW; del Río MR; Sola RG; Morrison JH
    Brain Res; 1994 Sep; 657(1-2):150-8. PubMed ID: 7820613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.