BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7680340)

  • 1. Identification of a complex operator for galP1, the glucose-sensitive, galactose-dependent promoter of the Streptomyces galactose operon.
    Mattern SG; Brawner ME; Westpheling J
    J Bacteriol; 1993 Mar; 175(5):1213-20. PubMed ID: 7680340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Streptomyces galP1 promoter has a novel RNA polymerase recognition sequence and is transcribed by a new form of RNA polymerase in vitro.
    Brawner ME; Mattern SG; Babcock MJ; Westpheling J
    J Bacteriol; 1997 May; 179(10):3222-31. PubMed ID: 9150217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon.
    Fornwald JA; Schmidt FJ; Adams CW; Rosenberg M; Brawner ME
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2130-4. PubMed ID: 3031664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two transcribing activities are involved in expression of the Streptomyces galactose operon.
    Westpheling J; Brawner M
    J Bacteriol; 1989 Mar; 171(3):1355-61. PubMed ID: 2921238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter.
    Ingram C; Brawner M; Youngman P; Westpheling J
    J Bacteriol; 1989 Dec; 171(12):6617-24. PubMed ID: 2592344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene organization and structure of the Streptomyces lividans gal operon.
    Adams CW; Fornwald JA; Schmidt FJ; Rosenberg M; Brawner ME
    J Bacteriol; 1988 Jan; 170(1):203-12. PubMed ID: 3335481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ccrA1: a mutation in Streptomyces coelicolor that affects the control of catabolite repression.
    Ingram C; Delic I; Westpheling J
    J Bacteriol; 1995 Jun; 177(12):3579-86. PubMed ID: 7768869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase.
    Chan B; Busby S
    Gene; 1989 Dec; 84(2):227-36. PubMed ID: 2693211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction.
    Ni X; Westpheling J
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13116-21. PubMed ID: 9371809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.
    Attey A; Belyaeva T; Savery N; Hoggett J; Fujita N; Ishihama A; Busby S
    Nucleic Acids Res; 1994 Oct; 22(21):4375-80. PubMed ID: 7971267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control.
    Delic I; Robbins P; Westpheling J
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1885-9. PubMed ID: 1542688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of the C-terminal domain of the RNA polymerase alpha subunit in different open complexes at the Escherichia coli galactose operon regulatory region.
    Belyaeva TA; Bown JA; Fujita N; Ishihama A; Busby SJ
    Nucleic Acids Res; 1996 Jun; 24(12):2242-51. PubMed ID: 8710492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organization of open complexes between Escherichia coli RNA polymerase and DNA fragments carrying promoters either with or without consensus -35 region sequences.
    Chan B; Spassky A; Busby S
    Biochem J; 1990 Aug; 270(1):141-8. PubMed ID: 2204341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA sequences in gal operon override transcription elongation blocks.
    Lewis DE; Komissarova N; Le P; Kashlev M; Adhya S
    J Mol Biol; 2008 Oct; 382(4):843-58. PubMed ID: 18691599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous mutations in the galactose operons of Streptomyces coelicolor A3 (2) and Streptomyces lividans 66.
    Ali-Dunkrah U; Kendall K; Cullum J
    J Basic Microbiol; 1990; 30(5):307-12. PubMed ID: 2213532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA polymerase makes important contacts upstream from base pair -49 at the Escherichia coli galactose operon P1 promoter.
    Busby S; Spassky A; Chan B
    Gene; 1987; 53(2-3):145-52. PubMed ID: 3038692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon.
    Smith CP; Chater KF
    J Mol Biol; 1988 Dec; 204(3):569-80. PubMed ID: 3225846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon.
    van Wezel GP; Krab IM; Douthwaite S; Bibb MJ; Vijgenboom E; Bosch L
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3357-65. PubMed ID: 7533593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isorepressor of the gal regulon in Escherichia coli.
    Weickert MJ; Adhya S
    J Mol Biol; 1992 Jul; 226(1):69-83. PubMed ID: 1619663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of an automatic DNA sequencer for S1 mapping: transcriptional analysis of the Streptomyces coelicolor A3(2) dnaK operon.
    Brans A; Loriaux A; Thamm I; Joris B; Dusart J
    FEMS Microbiol Lett; 1997 Apr; 149(2):189-94. PubMed ID: 9141660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.