These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7680340)

  • 1. Identification of a complex operator for galP1, the glucose-sensitive, galactose-dependent promoter of the Streptomyces galactose operon.
    Mattern SG; Brawner ME; Westpheling J
    J Bacteriol; 1993 Mar; 175(5):1213-20. PubMed ID: 7680340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Streptomyces galP1 promoter has a novel RNA polymerase recognition sequence and is transcribed by a new form of RNA polymerase in vitro.
    Brawner ME; Mattern SG; Babcock MJ; Westpheling J
    J Bacteriol; 1997 May; 179(10):3222-31. PubMed ID: 9150217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon.
    Fornwald JA; Schmidt FJ; Adams CW; Rosenberg M; Brawner ME
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2130-4. PubMed ID: 3031664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two transcribing activities are involved in expression of the Streptomyces galactose operon.
    Westpheling J; Brawner M
    J Bacteriol; 1989 Mar; 171(3):1355-61. PubMed ID: 2921238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter.
    Ingram C; Brawner M; Youngman P; Westpheling J
    J Bacteriol; 1989 Dec; 171(12):6617-24. PubMed ID: 2592344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene organization and structure of the Streptomyces lividans gal operon.
    Adams CW; Fornwald JA; Schmidt FJ; Rosenberg M; Brawner ME
    J Bacteriol; 1988 Jan; 170(1):203-12. PubMed ID: 3335481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ccrA1: a mutation in Streptomyces coelicolor that affects the control of catabolite repression.
    Ingram C; Delic I; Westpheling J
    J Bacteriol; 1995 Jun; 177(12):3579-86. PubMed ID: 7768869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase.
    Chan B; Busby S
    Gene; 1989 Dec; 84(2):227-36. PubMed ID: 2693211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction.
    Ni X; Westpheling J
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13116-21. PubMed ID: 9371809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.
    Attey A; Belyaeva T; Savery N; Hoggett J; Fujita N; Ishihama A; Busby S
    Nucleic Acids Res; 1994 Oct; 22(21):4375-80. PubMed ID: 7971267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control.
    Delic I; Robbins P; Westpheling J
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1885-9. PubMed ID: 1542688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of the C-terminal domain of the RNA polymerase alpha subunit in different open complexes at the Escherichia coli galactose operon regulatory region.
    Belyaeva TA; Bown JA; Fujita N; Ishihama A; Busby SJ
    Nucleic Acids Res; 1996 Jun; 24(12):2242-51. PubMed ID: 8710492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organization of open complexes between Escherichia coli RNA polymerase and DNA fragments carrying promoters either with or without consensus -35 region sequences.
    Chan B; Spassky A; Busby S
    Biochem J; 1990 Aug; 270(1):141-8. PubMed ID: 2204341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA sequences in gal operon override transcription elongation blocks.
    Lewis DE; Komissarova N; Le P; Kashlev M; Adhya S
    J Mol Biol; 2008 Oct; 382(4):843-58. PubMed ID: 18691599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous mutations in the galactose operons of Streptomyces coelicolor A3 (2) and Streptomyces lividans 66.
    Ali-Dunkrah U; Kendall K; Cullum J
    J Basic Microbiol; 1990; 30(5):307-12. PubMed ID: 2213532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA polymerase makes important contacts upstream from base pair -49 at the Escherichia coli galactose operon P1 promoter.
    Busby S; Spassky A; Chan B
    Gene; 1987; 53(2-3):145-52. PubMed ID: 3038692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon.
    Smith CP; Chater KF
    J Mol Biol; 1988 Dec; 204(3):569-80. PubMed ID: 3225846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon.
    van Wezel GP; Krab IM; Douthwaite S; Bibb MJ; Vijgenboom E; Bosch L
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3357-65. PubMed ID: 7533593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isorepressor of the gal regulon in Escherichia coli.
    Weickert MJ; Adhya S
    J Mol Biol; 1992 Jul; 226(1):69-83. PubMed ID: 1619663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of an automatic DNA sequencer for S1 mapping: transcriptional analysis of the Streptomyces coelicolor A3(2) dnaK operon.
    Brans A; Loriaux A; Thamm I; Joris B; Dusart J
    FEMS Microbiol Lett; 1997 Apr; 149(2):189-94. PubMed ID: 9141660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.