These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 7680794)
1. Selective blockade of spinal reflexes by omega-conotoxin in the isolated spinal cord of the neonatal rat. Bell JA Neuroscience; 1993 Feb; 52(3):711-6. PubMed ID: 7680794 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneous calcium currents and transmitter release in cultured mouse spinal cord and dorsal root ganglion neurons. Yu C; Lin PX; Fitzgerald S; Nelson P J Neurophysiol; 1992 Mar; 67(3):561-75. PubMed ID: 1374458 [TBL] [Abstract][Full Text] [Related]
3. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons. Rusin KI; Moises HC Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286 [TBL] [Abstract][Full Text] [Related]
4. Potassium depolarization elevates cytosolic free calcium concentration in rat anterior pituitary cells through 1,4-dihydropyridine-sensitive, omega-conotoxin-insensitive calcium channels. Meier K; Knepel W; Schöfl C Endocrinology; 1988 Jun; 122(6):2764-70. PubMed ID: 2453348 [TBL] [Abstract][Full Text] [Related]
5. mu-Opioid receptor activation reduces multiple components of high-threshold calcium current in rat sensory neurons. Rusin KI; Moises HC J Neurosci; 1995 Jun; 15(6):4315-27. PubMed ID: 7540671 [TBL] [Abstract][Full Text] [Related]
6. Maitotoxin-induced intracellular calcium rise in PC12 cells: involvement of dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels and phosphoinositide breakdown. Meucci O; Grimaldi M; Scorziello A; Govoni S; Bergamaschi S; Yasumoto T; Schettini G J Neurochem; 1992 Aug; 59(2):679-88. PubMed ID: 1378490 [TBL] [Abstract][Full Text] [Related]
7. Omega conotoxin and prejunctional modulation of the biphasic response of the rat isolated urinary bladder to single pulse electrical field stimulation. Maggi CA J Auton Pharmacol; 1991 Oct; 11(5):295-304. PubMed ID: 1721069 [TBL] [Abstract][Full Text] [Related]
8. Distribution of dihydropyridine and omega-conotoxin-sensitive calcium currents in acutely isolated rat and frog sensory neuron somata: diameter-dependent L channel expression in frog. Scroggs RS; Fox AP J Neurosci; 1991 May; 11(5):1334-46. PubMed ID: 1709205 [TBL] [Abstract][Full Text] [Related]
9. Failure of omega-conotoxin to block L-channels associated with [3H]5-HT release in rat brain slices. Rijnhout I; Hill DR; Middlemiss DN Neurosci Lett; 1990 Jul; 115(2-3):323-8. PubMed ID: 1700344 [TBL] [Abstract][Full Text] [Related]
10. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices. Valentijn K; Tranchand Bunel D; Vaudry H Brain Res Mol Brain Res; 1992 Jul; 14(3):221-30. PubMed ID: 1331651 [TBL] [Abstract][Full Text] [Related]
11. Effect of omega conotoxin on reflex responses mediated by activation of capsaicin-sensitive nerves of the rat urinary bladder and peptide release from the rat spinal cord. Maggi CA; Giuliani S; Santicioli P; Tramontana M; Meli A Neuroscience; 1990; 34(1):243-50. PubMed ID: 2325850 [TBL] [Abstract][Full Text] [Related]
12. Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line. Kasai H; Neher E J Physiol; 1992 Mar; 448():161-88. PubMed ID: 1375634 [TBL] [Abstract][Full Text] [Related]
13. Calcium channels in the GABAergic presynaptic nerve terminals projecting to meynert neurons of the rat. Rhee JS; Ishibashi H; Akaike N J Neurochem; 1999 Feb; 72(2):800-7. PubMed ID: 9930756 [TBL] [Abstract][Full Text] [Related]
14. Involvement of calcium channels in depolarization-evoked release of adenosine from spinal cord synaptosomes. Cahill CM; White TD; Sawynok J J Neurochem; 1993 Mar; 60(3):886-93. PubMed ID: 7679728 [TBL] [Abstract][Full Text] [Related]
15. Calcium channels controlling acetylcholine release in the guinea-pig isolated anterior pelvic ganglion: an electropharmacological study. Smith AB; Cunnane TC Neuroscience; 1999; 94(3):891-6. PubMed ID: 10579580 [TBL] [Abstract][Full Text] [Related]
16. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder. Somogyi GT; Zernova GV; Tanowitz M; de Groat WC J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):645-54. PubMed ID: 9130161 [TBL] [Abstract][Full Text] [Related]
17. Voltage dependence and activation kinetics of pharmacologically defined components of the high-threshold calcium current in rat neocortical neurons. Brown AM; Schwindt PC; Crill WE J Neurophysiol; 1993 Oct; 70(4):1530-43. PubMed ID: 7506757 [TBL] [Abstract][Full Text] [Related]
18. Effects of N- and L-type calcium channel antagonists on the responses of nociceptive spinal cord neurons to mechanical stimulation of the normal and the inflamed knee joint. Neugebauer V; Vanegas H; Nebe J; Rümenapp P; Schaible HG J Neurophysiol; 1996 Dec; 76(6):3740-9. PubMed ID: 8985872 [TBL] [Abstract][Full Text] [Related]
19. Role of calcium channels in the spinal transmission of nociceptive information from the mesentery. Horváth G; Brodacz B; Holzer-Petsche U Pain; 2001 Jul; 93(1):35-41. PubMed ID: 11406336 [TBL] [Abstract][Full Text] [Related]
20. Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves: mechanism of action and biological response. Geppetti P; Del Bianco E; Patacchini R; Santicioli P; Maggi CA; Tramontana M Neuroscience; 1991; 41(1):295-301. PubMed ID: 1711653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]