These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7680994)

  • 1. Determination of current density distributions generated by electrical stimulation of the human cerebral cortex.
    Nathan SS; Sinha SR; Gordon B; Lesser RP; Thakor NV
    Electroencephalogr Clin Neurophysiol; 1993 Mar; 86(3):183-92. PubMed ID: 7680994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of current flow in the human head during transcranial electrical therapy.
    Kasinadhuni AK; Indahlastari A; Chauhan M; Schär M; Mareci TH; Sadleir RJ
    Brain Stimul; 2017; 10(4):764-772. PubMed ID: 28457836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the 3D precentral gyrus model for unipolar and bipolar current stimulations.
    Seo H; Kim D; Jun SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1892-5. PubMed ID: 23366283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of tDCS volume conduction effects in a highly realistic head model.
    Wagner S; Rampersad SM; Aydin Ü; Vorwerk J; Oostendorp TF; Neuling T; Herrmann CS; Stegeman DF; Wolters CH
    J Neural Eng; 2014 Feb; 11(1):016002. PubMed ID: 24310982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
    Alam M; Truong DQ; Khadka N; Bikson M
    Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nerve stimulation with an electrode of finite size: differences between constant current and constant voltage stimulation.
    Stecker MM
    Comput Biol Med; 2004 Jan; 34(1):51-94. PubMed ID: 14741729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial direct current stimulation (tDCS) in a realistic head model.
    Sadleir RJ; Vannorsdall TD; Schretlen DJ; Gordon B
    Neuroimage; 2010 Jul; 51(4):1310-8. PubMed ID: 20350607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of electrodes and current limits for low frequency electrical impedance tomography of the brain.
    Gilad O; Horesh L; Holder DS
    Med Biol Eng Comput; 2007 Jul; 45(7):621-33. PubMed ID: 17597329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS.
    Faria P; Hallett M; Miranda PC
    J Neural Eng; 2011 Dec; 8(6):066017. PubMed ID: 22086257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis.
    Datta A; Elwassif M; Battaglia F; Bikson M
    J Neural Eng; 2008 Jun; 5(2):163-74. PubMed ID: 18441418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.
    Seo H; Jun SC
    Brain Stimul; 2019; 12(2):275-289. PubMed ID: 30449635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling.
    Im CH; Park JH; Shim M; Chang WH; Kim YH
    Phys Med Biol; 2012 Apr; 57(8):2137-50. PubMed ID: 22452936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.
    Santos L; Martinho M; Salvador R; Wenger C; Fernandes SR; Ripolles O; Ruffini G; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1778-1781. PubMed ID: 28268672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electric field in the cortex during transcranial current stimulation.
    Miranda PC; Mekonnen A; Salvador R; Ruffini G
    Neuroimage; 2013 Apr; 70():48-58. PubMed ID: 23274187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of subdural and epidural cortical stimulation of the motor cortex.
    Kim D; Jun SC; Kim HI
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7226-9. PubMed ID: 22256006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.
    Minjoli S; Saturnino GB; Blicher JU; Stagg CJ; Siebner HR; Antunes A; Thielscher A
    Neuroimage Clin; 2017; 15():106-117. PubMed ID: 28516033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.