BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7681044)

  • 21. Pertussis toxin effects on T lymphocytes are mediated through CD3 and not by pertussis toxin catalyzed modification of a G protein.
    Gray LS; Huber KS; Gray MC; Hewlett EL; Engelhard VH
    J Immunol; 1989 Mar; 142(5):1631-8. PubMed ID: 2521885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of Bordetella pertussis virulence components with neutrophils: effect on chemiluminescence induced by a chemotactic peptide and by intact bacteria.
    Craig FF; Lackie JM; Parton R; Freer JH
    J Gen Microbiol; 1988 Aug; 134(8):2201-11. PubMed ID: 2908118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of pertussis toxin with cells and model membranes.
    Hausman SZ; Burns DL
    J Biol Chem; 1992 Jul; 267(19):13735-9. PubMed ID: 1618869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane localization of the S1 subunit of pertussis toxin in Bordetella pertussis and implications for pertussis toxin secretion.
    Farizo KM; Fiddner S; Cheung AM; Burns DL
    Infect Immun; 2002 Mar; 70(3):1193-201. PubMed ID: 11854200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Description of a hybridoma bank towards Bordetella pertussis toxin and surface antigens.
    Poolman JT; Kuipers B; Vogel ML; Hamstra HJ; Nagel J
    Microb Pathog; 1990 Jun; 8(6):377-82. PubMed ID: 1980000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteolytic cleavage of pertussis toxin S1 subunit is not essential for its activity in mammalian cells.
    Carbonetti NH; Mays RM; Artamonova GV; Plaut RD; Worthington ZE
    BMC Microbiol; 2005 Feb; 5():7. PubMed ID: 15691377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-specific alterations in the B oligomer that affect receptor-binding activities and mitogenicity of pertussis toxin.
    Lobet Y; Feron C; Dequesne G; Simoen E; Hauser P; Locht C
    J Exp Med; 1993 Jan; 177(1):79-87. PubMed ID: 8418210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of ADP-ribosyltransferase activity of pertussis toxin in toxin-adhesin redundancy with filamentous hemagglutinin during Bordetella pertussis infection.
    Alonso S; Pethe K; Mielcarek N; Raze D; Locht C
    Infect Immun; 2001 Oct; 69(10):6038-43. PubMed ID: 11553541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulatory mechanism of expression of LPS binding site(s) and signaling events by LPS in macrophages.
    Akagawa KS; Kamoshita K; Tomita T; Yasuda T; Tokunaga T
    Adv Exp Med Biol; 1990; 256():467-80. PubMed ID: 1691581
    [No Abstract]   [Full Text] [Related]  

  • 30. A pertussis toxin-sensitive G-protein mediates some aspects of insulin action in BC3H-1 murine myocytes.
    Luttrell L; Kilgour E; Larner J; Romero G
    J Biol Chem; 1990 Oct; 265(28):16873-9. PubMed ID: 1698770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional modification by cholera-toxin-catalyzed ADP-ribosylation of a guanine-nucleotide-binding regulatory protein serving as the substrate of pertussis toxin.
    Iiri T; Ohoka Y; Ui M; Katada T
    Eur J Biochem; 1991 Dec; 202(2):635-41. PubMed ID: 1662135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of ATP by pertussis toxin and isolated toxin subunits.
    Hausman SZ; Manclark CR; Burns DL
    Biochemistry; 1990 Jul; 29(26):6128-31. PubMed ID: 1698450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protease treatment of pertussis toxin identifies the preferential cleavage of the S1 subunit.
    Krueger KM; Mende-Mueller LM; Barbieri JT
    J Biol Chem; 1991 May; 266(13):8122-8. PubMed ID: 1850738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of microcalorimetry to characterize tetanus neurotoxin, pertussis toxin and filamentous haemagglutinin.
    Krell T; Greco F; Nicolaï MC; Dubayle J; Renauld-Mongénie G; Poisson N; Bernard I
    Biotechnol Appl Biochem; 2003 Dec; 38(Pt 3):241-51. PubMed ID: 12911336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of protein kinase C inhibitor (H-7) and calmodulin antagonist (W-7) on pertussis toxin-induced IL-1 production by human adherent monocytes. Comparison with lipopolysaccharide as a stimulator of IL-1 production.
    Taniguchi H; Sakano T; Hamasaki T; Kashiwa H; Ueda K
    Immunology; 1989 Jun; 67(2):210-5. PubMed ID: 2787778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunomodulation of murine experimental autoimmune encephalomyelitis by pertussis toxin: the protective activity, but not the disease-enhancing activity, can be attributed to the nontoxic B-oligomer.
    Ben-Nun A; Mendel I; Kerlero de Rosbo N
    Proc Assoc Am Physicians; 1997 Mar; 109(2):120-5. PubMed ID: 9069580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of pertussis toxin binding to model receptors by antipeptide antibodies directed at an antigenic domain of the S2 subunit.
    Schmidt MA; Schmidt W
    Infect Immun; 1989 Dec; 57(12):3828-33. PubMed ID: 2478479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and characterization of PtlC, an essential component of the pertussis toxin secretion system.
    Cook DM; Farizo KM; Burns DL
    Infect Immun; 1999 Feb; 67(2):754-9. PubMed ID: 9916087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of the in vitro activation of pertussis toxin by ATP.
    Krueger KM; Barbieri JT
    J Biol Chem; 1993 Jun; 268(17):12570-8. PubMed ID: 8509398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the lectin-like binding domains in pertussis toxin using synthetic peptide sequences. Identification of a sialic acid binding site in the S2 subunit of the toxin.
    Heerze LD; Chong PC; Armstrong GD
    J Biol Chem; 1992 Dec; 267(36):25810-5. PubMed ID: 1281475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.