BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7681064)

  • 1. Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region.
    Morgan WT; Muster P; Tatum F; Kao SM; Alam J; Smith A
    J Biol Chem; 1993 Mar; 268(9):6256-62. PubMed ID: 7681064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of hemopexin domains and monoclonal antibodies to hemopexin to probe the molecular determinants of hemopexin-mediated heme transport.
    Morgan WT; Muster P; Tatum FM; McConnell J; Conway TP; Hensley P; Smith A
    J Biol Chem; 1988 Jun; 263(17):8220-5. PubMed ID: 3372521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MCD, EPR and NMR spectroscopic studies of rabbit hemopexin and its heme binding domain.
    Cox MC; Le Brun N; Thomson AJ; Smith A; Morgan WT; Moore GR
    Biochim Biophys Acta; 1995 Dec; 1253(2):215-23. PubMed ID: 8519805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further characterization of structural determinants of rabbit hemopexin function.
    Muster P; Tatum F; Smith A; Morgan WT
    J Protein Chem; 1991 Feb; 10(1):123-8. PubMed ID: 2054057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin.
    Smith A; Alam J; Escriba PV; Morgan WT
    J Biol Chem; 1993 Apr; 268(10):7365-71. PubMed ID: 8463269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of an iron-regulated hemopexin receptor in Haemophilus influenzae type b.
    Wong JC; Holland J; Parsons T; Smith A; Williams P
    Infect Immun; 1994 Jan; 62(1):48-59. PubMed ID: 8262649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of heme iron-coordinating histidine residues of human hemopexin expressed in baculovirus-infected insect cells.
    Satoh T; Satoh H; Iwahara S; Hrkal Z; Peyton DH; Muller-Eberhard U
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8423-7. PubMed ID: 8078898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of oxidative modifications of hemopexin and their predicted physiological relevance.
    Hahl P; Hunt R; Bjes ES; Skaff A; Keightley A; Smith A
    J Biol Chem; 2017 Aug; 292(33):13658-13671. PubMed ID: 28596380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function.
    Bracken CS; Baer MT; Abdur-Rashid A; Helms W; Stojiljkovic I
    J Bacteriol; 1999 Oct; 181(19):6063-72. PubMed ID: 10498719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme binding by hemopexin: evidence for multiple modes of binding and functional implications.
    Shipulina N; Smith A; Morgan WT
    J Protein Chem; 2000 Apr; 19(3):239-48. PubMed ID: 10981817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two beta-propeller domains.
    Paoli M; Anderson BF; Baker HM; Morgan WT; Smith A; Baker EN
    Nat Struct Biol; 1999 Oct; 6(10):926-31. PubMed ID: 10504726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b.
    Cope LD; Yogev R; Muller-Eberhard U; Hansen EJ
    J Bacteriol; 1995 May; 177(10):2644-53. PubMed ID: 7751272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of ligand-induced conformational changes in hemopexin for receptor-mediated heme transport.
    Smith A; Tatum FM; Muster P; Burch MK; Morgan WT
    J Biol Chem; 1988 Apr; 263(11):5224-9. PubMed ID: 2833500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrosylation of rabbit ferrous heme-hemopexin.
    Fasano M; Bocedi A; Mattu M; Coletta M; Ascenzi P
    J Biol Inorg Chem; 2004 Oct; 9(7):800-6. PubMed ID: 15378409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An avian serum alpha 1-glycoprotein, hemopexin, differing significantly in both amino acid and carbohydrate composition from mammalian (beta-glycoprotein) counterparts.
    Goldfarb V; Trimble RB; De Falco M; Liem HH; Metcalfe SA; Wellner D; Muller-Eberhard U
    Biochemistry; 1986 Oct; 25(21):6555-62. PubMed ID: 3790542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity, conservation, and surface exposure of hemopexin-binding proteins in Haemophilus influenzae.
    Wong JC; Patel R; Kendall D; Whitby PW; Smith A; Holland J; Williams P
    Infect Immun; 1995 Jun; 63(6):2327-33. PubMed ID: 7768617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete amino acid sequence of human hemopexin, the heme-binding protein of serum.
    Takahashi N; Takahashi Y; Putnam FW
    Proc Natl Acad Sci U S A; 1985 Jan; 82(1):73-7. PubMed ID: 3855550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of hemopexin and its interaction with heme by differential scanning calorimetry and circular dichroism.
    Wu ML; Morgan WT
    Biochemistry; 1993 Jul; 32(28):7216-22. PubMed ID: 8343510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell surface receptor for hemopexin in human leukemia HL60 cells. Specific binding, affinity labeling, and fate of heme.
    Taketani S; Kohno H; Tokunaga R
    J Biol Chem; 1987 Apr; 262(10):4639-43. PubMed ID: 3031028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemopexin-mediated heme uptake by liver. Characterization of the interaction of heme-hemopexin with isolated rabbit liver plasma membranes.
    Smith A; Morgan WT
    J Biol Chem; 1984 Oct; 259(19):12049-53. PubMed ID: 6480598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.