These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7681380)

  • 1. Spontaneous nystagmus across the sleep-wake cycle in vegetative state patients.
    Gordon CR; Oksenberg A
    Electroencephalogr Clin Neurophysiol; 1993 Feb; 86(2):132-7. PubMed ID: 7681380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prominent role for amygdaloid complexes in the Variability in Heart Rate (VHR) during Rapid Eye Movement (REM) sleep relative to wakefulness.
    Desseilles M; Vu TD; Laureys S; Peigneux P; Degueldre C; Phillips C; Maquet P
    Neuroimage; 2006 Sep; 32(3):1008-15. PubMed ID: 16875846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of nystagmus during REM sleep in a patient with waking nystagmus and oscillopsia.
    Tauber ES; Weitzman ED; Herman J; Pessah M
    J Neurol Neurosurg Psychiatry; 1973 Oct; 36(5):833-8. PubMed ID: 4356732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of a presleep optokinetic stimulation on rapid eye movements during REM sleep.
    De Gennaro L; Ferrara M
    Physiol Behav; 2000 Jun 1-15; 69(4-5):471-5. PubMed ID: 10913786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin control of sleep-wake behavior.
    Monti JM
    Sleep Med Rev; 2011 Aug; 15(4):269-81. PubMed ID: 21459634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study.
    Braun AR; Balkin TJ; Wesenten NJ; Carson RE; Varga M; Baldwin P; Selbie S; Belenky G; Herscovitch P
    Brain; 1997 Jul; 120 ( Pt 7)():1173-97. PubMed ID: 9236630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method.
    Maquet P; Dive D; Salmon E; Sadzot B; Franco G; Poirrier R; von Frenckell R; Franck G
    Brain Res; 1990 Apr; 513(1):136-43. PubMed ID: 2350676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kv3 potassium channels control the duration of different arousal states by distinct stochastic and clock-like mechanisms.
    Joho RH; Marks GA; Espinosa F
    Eur J Neurosci; 2006 Mar; 23(6):1567-74. PubMed ID: 16553620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The studies of the attacks of abnormal eye movement in a case of infantile spasms.
    Horita H; Hoashi E; Okuyama Y; Kumagai K; Endo S
    Folia Psychiatr Neurol Jpn; 1977; 31(3):393-402. PubMed ID: 590878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the 5-HT₆ receptor antagonists SB-399885 and RO-4368554 and of the 5-HT(2A) receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle.
    Monti JM; Jantos H
    Behav Brain Res; 2011 Jan; 216(1):381-8. PubMed ID: 20732355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep in the unresponsive wakefulness syndrome and minimally conscious state.
    Cologan V; Drouot X; Parapatics S; Delorme A; Gruber G; Moonen G; Laureys S
    J Neurotrauma; 2013 Mar; 30(5):339-46. PubMed ID: 23121471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel analysis of sleep patterns in rats separates periods of vigilance cycling from long-duration wake events.
    Simasko SM; Mukherjee S
    Behav Brain Res; 2009 Jan; 196(2):228-36. PubMed ID: 18835301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of nystagmus during REM sleep in patients with vestibular neuritis.
    Eisensehr I; Noachtar S; Strupp M; von Lindeiner H; Brandt T; Büttner U
    J Neurol Neurosurg Psychiatry; 2001 Sep; 71(3):386-9. PubMed ID: 11511716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep patterns associated with the severity of impairment in a large cohort of patients with chronic disorders of consciousness.
    Rossi Sebastiano D; Visani E; Panzica F; Sattin D; Bersano A; Nigri A; Ferraro S; Parati E; Leonardi M; Franceschetti S
    Clin Neurophysiol; 2018 Mar; 129(3):687-693. PubMed ID: 29307451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency activities in the human orbitofrontal cortex in sleep-wake cycle.
    Nishida M; Uchida S; Hirai N; Miwakeichi F; Maehara T; Kawai K; Shimizu H; Kato S
    Neurosci Lett; 2005 May; 379(2):110-5. PubMed ID: 15823426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanin-concentrating hormone control of sleep-wake behavior.
    Monti JM; Torterolo P; Lagos P
    Sleep Med Rev; 2013 Aug; 17(4):293-8. PubMed ID: 23477948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of prior wakefulness and circadian phase on nap sleep.
    Dinges DF
    Electroencephalogr Clin Neurophysiol; 1986 Sep; 64(3):224-7. PubMed ID: 2427317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle.
    Vigo DE; Dominguez J; Guinjoan SM; Scaramal M; Ruffa E; Solernó J; Siri LN; Cardinali DP
    Auton Neurosci; 2010 Apr; 154(1-2):84-8. PubMed ID: 19926347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential.
    Marshall L; Mölle M; Born J
    Neuroscience; 2003; 121(4):1047-53. PubMed ID: 14580954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.