These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7681530)

  • 1. A proflavin-induced frameshift hotspot in the thymidylate synthase gene of bacteriophage T4.
    Brown MD; Ripley LS; Hall DH
    Mutat Res; 1993 Apr; 286(2):189-97. PubMed ID: 7681530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frameshift mutations produced by proflavin in bacteriophage T4: specificity within a hotspot.
    Ripley LS; Clark A
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6954-8. PubMed ID: 3462738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion and duplication sequences induced in CHO cells by teniposide (VM-26), a topoisomerase II targeting drug, can be explained by the processing of DNA nicks produced by the drug-topoisomerase interaction.
    Ripley LS
    Mutat Res; 1994 Apr; 312(2):67-78. PubMed ID: 7510833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and characterization of mutations induced by nitrous acid or hydroxylamine in the intron-containing thymidylate synthase gene of bacteriophage T4.
    Brown MD; Povinelli CM; Hall DH
    Biochem Genet; 1993 Dec; 31(11-12):507-20. PubMed ID: 8166624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specificity of topoisomerase-mediated DNA cleavage defines acridine-induced frameshift specificity within a hotspot in bacteriophage T4.
    Masurekar M; Kreuzer KN; Ripley LS
    Genetics; 1991 Mar; 127(3):453-62. PubMed ID: 1849858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA nick processing by exonuclease and polymerase activities of bacteriophage T4 DNA polymerase accounts for acridine-induced mutation specificities in T4.
    Kaiser VL; Ripley LS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2234-8. PubMed ID: 7892253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hotspot sites for acridine-induced frameshift mutations in bacteriophage T4 correspond to sites of action of the T4 type II topoisomerase.
    Ripley LS; Dubins JS; deBoer JG; DeMarini DM; Bogerd AM; Kreuzer KN
    J Mol Biol; 1988 Apr; 200(4):665-80. PubMed ID: 2842508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural model for sequence-specific proflavin-DNA interactions during in vitro frameshift mutagenesis.
    Berman HM; Sussman JL; Joshua-Tor L; Revich GG; Ripley LS
    J Biomol Struct Dyn; 1992 Oct; 10(2):317-31. PubMed ID: 1466812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of T4 bacteriophage deletion mutants that lack td and frd genes.
    Wang Y; Mathews CK
    J Virol; 1989 Nov; 63(11):4736-43. PubMed ID: 2677402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach for isolation and mapping of intron mutations in a ribonucleotide reductase encoding gene (nrdB) of bacteriophage T4 using the white halo plaque phenotype.
    Lal SK; Hall DH
    Biochem Biophys Res Commun; 1993 Oct; 196(2):943-9. PubMed ID: 8240371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrupted thymidylate synthase gene of bacteriophages T2 and T6 and other potential self-splicing introns in the T-even bacteriophages.
    Chu FK; Maley F; Martinez J; Maley GF
    J Bacteriol; 1987 Sep; 169(9):4368-75. PubMed ID: 2442142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrum of spontaneous frameshift mutations. Sequences of bacteriophage T4 rII gene frameshifts.
    Ripley LS; Clark A; deBoer JG
    J Mol Biol; 1986 Oct; 191(4):601-13. PubMed ID: 3806675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frameshift mutagenesis of lambda prophage by 9-aminoacridine, proflavin and ICR-191.
    Skopek TR; Hutchinson F
    Mol Gen Genet; 1984; 195(3):418-23. PubMed ID: 6236349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spectrum of acridine resistant mutants of bacteriophage T4 reveals cryptic effects of the tsL141 DNA polymerase allele on spontaneous mutagenesis.
    Wang FJ; Ripley LS
    Genetics; 1998 Apr; 148(4):1655-65. PubMed ID: 9560385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-directed, hydroxylamine-generated suppressor mutation in the P3 pairing region of the bacteriophage T4 td intron partially restores self-splicing capability.
    Brown MD; DeYoung KL; Hall DH
    Mol Microbiol; 1994 Jul; 13(1):89-95. PubMed ID: 7984096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the restriction site of a prokaryotic intron-encoded endonuclease.
    Chu FK; Maley G; Pedersen-Lane J; Wang AM; Maley F
    Proc Natl Acad Sci U S A; 1990 May; 87(9):3574-8. PubMed ID: 2159153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two domains for splicing in the intron of the phage T4 thymidylate synthase (td) gene established by nondirected mutagenesis.
    Hall DH; Povinelli CM; Ehrenman K; Pedersen-Lane J; Chu F; Belfort M
    Cell; 1987 Jan; 48(1):63-71. PubMed ID: 3791415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo.
    Semrad K; Schroeder R
    Genes Dev; 1998 May; 12(9):1327-37. PubMed ID: 9573049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of EMS induced splicing defective point mutations within the intron of the nrdB gene of bacteriophage T4.
    Khan AU; Lal SK; Ahmad M
    Biochem Biophys Res Commun; 1998 Jan; 242(1):10-5. PubMed ID: 9439601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.