BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 7681905)

  • 1. Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157.
    Cox DA; Conforti L; Sperelakis N; Matlib MA
    J Cardiovasc Pharmacol; 1993 Apr; 21(4):595-9. PubMed ID: 7681905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of L-type Ca2+ channel by mitochondrial Na+-Ca2+ exchange inhibitor CGP-37157 in rat atrial myocytes.
    Thu le T; Ahn JR; Woo SH
    Eur J Pharmacol; 2006 Dec; 552(1-3):15-9. PubMed ID: 17054940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of canine (NCX1.1) and Drosophila (CALX1.1) Na(+)-Ca(2+) exchangers by 7-chloro-3,5-dihydro-5-phenyl-1H-4,1-benzothiazepine-2-one (CGP-37157).
    Omelchenko A; Bouchard R; Le HD; Choptiany P; Visen N; Hnatowich M; Hryshko LV
    J Pharmacol Exp Ther; 2003 Sep; 306(3):1050-7. PubMed ID: 12808003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria.
    Cox DA; Matlib MA
    J Biol Chem; 1993 Jan; 268(2):938-47. PubMed ID: 8419373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological investigation of mitochondrial ca(2+) transport in central neurons: studies with CGP-37157, an inhibitor of the mitochondrial Na(+)-Ca(2+) exchanger.
    Scanlon JM; Brocard JB; Stout AK; Reynolds IJ
    Cell Calcium; 2000; 28(5-6):317-27. PubMed ID: 11115371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective effects of diltiazem, a benzothiazepine calcium channel blocker, and diazepam, and other benzodiazepines on the Na+/Ca2+ exchange carrier system of heart and brain mitochondria.
    Matlib MA; Schwartz A
    Life Sci; 1983 Jun; 32(25):2837-42. PubMed ID: 6406780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S; McCarron JG
    Cell Calcium; 2009 Aug; 46(2):107-13. PubMed ID: 19577805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CGP-37157 inhibits the sarcoplasmic reticulum Ca²+ ATPase and activates ryanodine receptor channels in striated muscle.
    Neumann JT; Diaz-Sylvester PL; Fleischer S; Copello JA
    Mol Pharmacol; 2011 Jan; 79(1):141-7. PubMed ID: 20923851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of plasmalemmal Na(+)/Ca(2+) exchange by mitochondrial Na(+)/Ca(2+) exchange inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) in cerebellar granule cells.
    Czyz A; Kiedrowski L
    Biochem Pharmacol; 2003 Dec; 66(12):2409-11. PubMed ID: 14637198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles for mitochondrial and reverse mode Na+/Ca2+ exchange and the plasmalemma Ca2+ ATPase in post-tetanic potentiation at crayfish neuromuscular junctions.
    Zhong N; Beaumont V; Zucker RS
    J Neurosci; 2001 Dec; 21(24):9598-607. PubMed ID: 11739570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequestration of depolarization-induced Ca2+ loads by mitochondria and Ca2+ efflux via mitochondrial Na+/Ca2+ exchanger in bovine adrenal chromaffin cells.
    Sorimachi M; Nishimura S; Yamagami K
    Jpn J Physiol; 1999 Feb; 49(1):35-46. PubMed ID: 10219107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological discrimination of plasmalemmal and mitochondrial sodium-calcium exchanger in cardiomyocyte-derived H9c2 cells.
    Namekata I; Hamaguchi S; Tanaka H
    Biol Pharm Bull; 2015; 38(1):147-50. PubMed ID: 25744471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of low Na+-induced increase in intracellular calcium in KCl-depolarized rat cardiomyocytes.
    Rathi SS; Saini HK; Xu YJ; Dhalla NS
    Mol Cell Biochem; 2004 Aug; 263(1-2):151-62. PubMed ID: 15524176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of cardiac sarcolemmal Na+-Ca2+ exchange by diltiazem and verapamil.
    Takeo S; Elimban V; Dhalla NS
    Can J Cardiol; 1985 Mar; 1(2):131-8. PubMed ID: 2996725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of the failure of mitochondrial function in isolated guinea-pig myocytes subjected to a Ca2+ overload.
    Ban K; Handa S; Chapman RA
    Cardiovasc Res; 1999 Dec; 44(3):556-67. PubMed ID: 10690288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure.
    Liu T; Takimoto E; Dimaano VL; DeMazumder D; Kettlewell S; Smith G; Sidor A; Abraham TP; O'Rourke B
    Circ Res; 2014 Jun; 115(1):44-54. PubMed ID: 24780171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clonazepam and diltiazem both inhibit sodium-calcium exchange of mitochondria, but only diltiazem inhibits the slow action potentials of cardiac muscles.
    Matlib MA; Doane JD; Sperelakis N; Riccippo-Neto F
    Biochem Biophys Res Commun; 1985 Apr; 128(1):290-6. PubMed ID: 3985971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence Analysis of the Mitochondrial Effect of a Plasmalemmal Na
    Namekata I; Hamaguchi S; Iida-Tanaka N; Kusakabe T; Kato K; Kawanishi T; Tanaka H
    Biol Pharm Bull; 2017; 40(9):1551-1555. PubMed ID: 28867737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.