These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 7682499)
1. The toxicokinetic behavior of chlorobenzenes in earthworms (Eisenia andrei): experiments in water. Belfroid A; van Wezel A; Sikkenk M; van Gestel K; Seinen W; Hermens J Ecotoxicol Environ Saf; 1993 Apr; 25(2):154-65. PubMed ID: 7682499 [TBL] [Abstract][Full Text] [Related]
2. Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Jager T; Fleuren RH; Hogendoorn EA; de Korte G Environ Sci Technol; 2003 Aug; 37(15):3399-404. PubMed ID: 12966987 [TBL] [Abstract][Full Text] [Related]
3. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. van der Wal L; Jager T; Fleuren RH; Barendregt A; Sinnige TL; Van Gestel CA; Hermens JL Environ Sci Technol; 2004 Sep; 38(18):4842-8. PubMed ID: 15487794 [TBL] [Abstract][Full Text] [Related]
4. Role of soil interstitial water in the accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine in the earthworm Eisenia andrei. Savard K; Sarrazin M; Dodard SG; Monteil-Rivera F; Kuperman RG; Hawari J; Sunahara GI Environ Toxicol Chem; 2010 Apr; 29(4):998-1005. PubMed ID: 20821531 [TBL] [Abstract][Full Text] [Related]
5. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil. Smith BA; Egeler P; Gilberg D; Hendershot W; Stephenson GL Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851 [TBL] [Abstract][Full Text] [Related]
6. Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. Díez-Ortiz M; Giska I; Groot M; Borgman EM; Van Gestel CA Chemosphere; 2010 Aug; 80(9):1036-43. PubMed ID: 20674662 [TBL] [Abstract][Full Text] [Related]
7. Critical internal and aqueous lethal concentrations of chlorobenzenes with the crab Portunus pelagicus (L). Mortimer MR; Connell DW Ecotoxicol Environ Saf; 1994 Aug; 28(3):298-312. PubMed ID: 7525224 [TBL] [Abstract][Full Text] [Related]
8. Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish. Connell DW; Hawker DW Ecotoxicol Environ Saf; 1988 Dec; 16(3):242-57. PubMed ID: 3229380 [TBL] [Abstract][Full Text] [Related]
9. Bioconcentration, biotransformation, and elimination of polycyclic aromatic hydrocarbons in sheepshead minnows (Cyprinodon variegatus) exposed to contaminated seawater. Jonsson G; Bechmann RK; Bamber SD; Baussant T Environ Toxicol Chem; 2004 Jun; 23(6):1538-48. PubMed ID: 15376540 [TBL] [Abstract][Full Text] [Related]
10. Differential acute toxicity of tetrachlorobenzene isomers to oligochaetes in soil and water: application of the critical body residue concept. Hurdzan CM; Lanno RP; Sovic DM Bull Environ Contam Toxicol; 2011 Sep; 87(3):209-14. PubMed ID: 21688121 [TBL] [Abstract][Full Text] [Related]
11. Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. van Gestel CA; Ma WC Ecotoxicol Environ Saf; 1988 Jun; 15(3):289-97. PubMed ID: 3168876 [TBL] [Abstract][Full Text] [Related]
12. Dietary uptake of superlipophilic compounds by earthworms (Eisenia andrei). Belfroid A; Meiling J; Drenth HJ; Hermens J; Seinen W; van Gestel K Ecotoxicol Environ Saf; 1995 Aug; 31(3):185-91. PubMed ID: 7498054 [TBL] [Abstract][Full Text] [Related]
13. A Reduced Model for Bioconcentration and Biotransformation of Neutral Organic Compounds in Midge. Kuo DTF; Chen CC Environ Toxicol Chem; 2021 Jan; 40(1):57-71. PubMed ID: 33044762 [TBL] [Abstract][Full Text] [Related]
14. Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida). Matscheko N; Lundstedt S; Svensson L; Harju M; Tysklind M Environ Toxicol Chem; 2002 Aug; 21(8):1724-9. PubMed ID: 12152775 [TBL] [Abstract][Full Text] [Related]
15. Uptake and accumulation of pentachlorophenol and sodium pentachlorophenate by earthworms from water and soil. Haque A; Ebing W Sci Total Environ; 1988 Jan; 68():113-25. PubMed ID: 3363313 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient. Bintein S; Devillers J; Karcher W SAR QSAR Environ Res; 1993; 1(1):29-39. PubMed ID: 8790626 [TBL] [Abstract][Full Text] [Related]
17. Investigation on the relationship between critical body residue and bioconcentration in zebrafish based on bio-uptake kinetics for five nitro-aromatics. Yang Y; Li T; Yan L; Yu Y; Wang S; Li C; Wen Y; Zhao Y Regul Toxicol Pharmacol; 2018 Oct; 98():18-23. PubMed ID: 30008378 [TBL] [Abstract][Full Text] [Related]
18. Bioconcentration studies with the freshwater amphipod Hyalella azteca: are the results predictive of bioconcentration in fish? Schlechtriem C; Kampe S; Bruckert HJ; Bischof I; Ebersbach I; Kosfeld V; Kotthoff M; Schäfers C; L'Haridon J Environ Sci Pollut Res Int; 2019 Jan; 26(2):1628-1641. PubMed ID: 30446915 [TBL] [Abstract][Full Text] [Related]
19. Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei). Yu S; Lanno RP Environ Toxicol Chem; 2010 Jul; 29(7):1568-74. PubMed ID: 20821607 [TBL] [Abstract][Full Text] [Related]
20. Bioconcentration and Elimination of the Dithiocarbamate Fungicide Polycarbamate in Marine Teleost Fish and Polychaete. Hano T; Ohkubo N; Kono K; Tanaka H Bull Environ Contam Toxicol; 2015 Sep; 95(3):340-3. PubMed ID: 25904091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]