These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7682680)

  • 1. Formalin-induced nociceptive responses in diabetic mice.
    Kamei J; Hitosugi H; Kasuya Y
    Neurosci Lett; 1993 Jan; 149(2):161-4. PubMed ID: 7682680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of spinal delta1-opioid receptors in inhibiting the formalin-induced nociceptive response in diabetic mice.
    Kamei J; Kashiwazaki T; Hitosugi H; Nagase H
    Eur J Pharmacol; 1997 May; 326(1):31-6. PubMed ID: 9178652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algogenic mediator-induced nociceptive response in diabetic mice.
    Kamei J; Kashiwazaki T; Taki K; Hitosugi H; Nagase H
    Eur J Pharmacol; 1999 Mar; 369(3):319-23. PubMed ID: 10225369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delta-opiod receptor-mediated forced swimming stress-induced antinociception in the formalin test.
    Kamei J; Hitosugi H; Misawa M; Nagase H; Kasuya Y
    Psychopharmacology (Berl); 1993; 113(1):15-8. PubMed ID: 7862822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the formalin-induced nociceptive response by diabetes: possible involvement of intracellular calcium.
    Kamei J; Taki K; Ohsawa M; Hitosugi H
    Brain Res; 2000 Apr; 862(1-2):257-61. PubMed ID: 10799695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of endogenous opioid peptides in modulation of nocifensive response to formalin.
    Wu HE; Hung KC; Mizoguchi H; Nagase H; Tseng LF
    J Pharmacol Exp Ther; 2002 Feb; 300(2):647-54. PubMed ID: 11805228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mexiletine on formalin-induced nociceptive responses in mice.
    Kamei J; Hitosugi H; Kasuya Y
    Res Commun Chem Pathol Pharmacol; 1993 May; 80(2):153-62. PubMed ID: 7686682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nociceptive responses to intrathecally administered substance P and somatostatin in diabetic mice.
    Kamei J; Hitosugi H; Kasuya Y
    Life Sci; 1993; 52(4):PL31-6. PubMed ID: 7678435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the formalin-induced nociceptive response by diabetes: possible involvement of protein kinase C.
    Ohsawa M; Kashiwazaki T; Kamei J
    Brain Res; 1998 Aug; 803(1-2):198-203. PubMed ID: 9729382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of substance P1-7 amide on nociceptive threshold in diabetic mice.
    Ohsawa M; Carlsson A; Asato M; Koizumi T; Nakanishi Y; Fransson R; Sandström A; Hallberg M; Nyberg F; Kamei J
    Peptides; 2011 Jan; 32(1):93-8. PubMed ID: 20933559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the antinociceptive effects of oxycodone in diabetic mice.
    Nozaki C; Saitoh A; Kamei J
    Eur J Pharmacol; 2006 Mar; 535(1-3):145-51. PubMed ID: 16533506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential roles of spinal cholera toxin- and pertussis toxin-sensitive G proteins in nociceptive responses caused by formalin, capsaicin, and substance P in mice.
    Chung KM; Lee KC; Choi SS; Suh HW
    Brain Res Bull; 2001 Mar; 54(5):537-42. PubMed ID: 11397545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrathecal morphine-3-glucuronide-induced nociceptive behavior via Delta-2 opioid receptors in the spinal cord.
    Komatsu T; Katsuyama S; Nagase H; Mizoguchi H; Sakurada C; Tsuzuki M; Sakurada S; Sakurada T
    Pharmacol Biochem Behav; 2016 Jan; 140():68-74. PubMed ID: 26476133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of opioid receptors in the antinociception produced by intracerebroventricularly administered spantide in mice.
    Tan-No K; Sakurada T; Yamada T; Sakurada S; Kisara K
    Neuropeptides; 1995 Nov; 29(5):293-9. PubMed ID: 8587665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociceptive effect of L-arginine in diabetic mice.
    Kamei J; Iwamoto Y; Misawa M; Nagase H; Kasuya Y
    Eur J Pharmacol; 1994 Mar; 254(1-2):113-7. PubMed ID: 8206107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of mexiletine on algogenic mediator-induced nociceptive responses in mice.
    Hitosugi H; Kashiwazaki T; Ohsawa M; Kamei J
    Methods Find Exp Clin Pharmacol; 1999; 21(6):409-13. PubMed ID: 10445233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of diabetes on the antinociceptive effect of (+/-)pentazocine in mice.
    Kamei J; Iwamoto Y; Misawa M; Nagase H; Kasuya Y
    Res Commun Chem Pathol Pharmacol; 1994 Apr; 84(1):105-10. PubMed ID: 8042002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antinociceptive effects of the ORL1 receptor agonist nociceptin/orphanin FQ in diabetic mice.
    Kamei J; Ohsawa M; Kashiwazaki T; Nagase H
    Eur J Pharmacol; 1999 Apr; 370(2):109-16. PubMed ID: 10323258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antinociceptive effect of lipopolysaccharide from Pantoea agglomerans on streptozotocin-induced diabetic mice.
    Kamei J; Iwamoto Y; Suzuki T; Misawa M; Kasuya Y; Nagase H; Okutomi T; Soma G; Mizuno D
    Eur J Pharmacol; 1994 Jan; 251(1):95-8. PubMed ID: 8137875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of diabetes on the antinociceptive effect of beta-endorphin.
    Kamei J; Kawashima N; Hitosugi H; Misawa M; Nagase H; Kasuya Y
    Brain Res; 1993 Aug; 619(1-2):76-80. PubMed ID: 8374794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.