BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7682848)

  • 1. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation.
    Nicolli A; Petronilli V; Bernardi P
    Biochemistry; 1993 Apr; 32(16):4461-5. PubMed ID: 7682848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+.
    Petronilli V; Cola C; Bernardi P
    J Biol Chem; 1993 Jan; 268(2):1011-6. PubMed ID: 7678245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A.
    Petronilli V; Nicolli A; Costantini P; Colonna R; Bernardi P
    Biochim Biophys Acta; 1994 Aug; 1187(2):255-9. PubMed ID: 7521212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability.
    Bernardi P; Veronese P; Petronilli V
    J Biol Chem; 1993 Jan; 268(2):1005-10. PubMed ID: 8419309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria.
    Petronilli V; Cola C; Massari S; Colonna R; Bernardi P
    J Biol Chem; 1993 Oct; 268(29):21939-45. PubMed ID: 8408050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites.
    Chernyak BV; Bernardi P
    Eur J Biochem; 1996 Jun; 238(3):623-30. PubMed ID: 8706660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet oxygen produced by photodynamic action causes inactivation of the mitochondrial permeability transition pore.
    Salet C; Moreno G; Ricchelli F; Bernardi P
    J Biol Chem; 1997 Aug; 272(35):21938-43. PubMed ID: 9268328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites.
    Costantini P; Chernyak BV; Petronilli V; Bernardi P
    J Biol Chem; 1996 Mar; 271(12):6746-51. PubMed ID: 8636095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents.
    Petronilli V; Costantini P; Scorrano L; Colonna R; Passamonti S; Bernardi P
    J Biol Chem; 1994 Jun; 269(24):16638-42. PubMed ID: 7515881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the effects of paraquat on isolated mitochondria. Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide.
    Costantini P; Petronilli V; Colonna R; Bernardi P
    Toxicology; 1995 May; 99(1-2):77-88. PubMed ID: 7539163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of mitochondrial permeability transition by low pH is associated with less extensive membrane protein thiol oxidation.
    Teixeira BM; Kowaltowski AJ; Castilho RF; Vercesi AE
    Biosci Rep; 1999 Dec; 19(6):525-33. PubMed ID: 10841269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclosporin A-sensitive decrease in the transmembrane potential across the inner membrane of liver mitochondria induced by low concentrations of fatty acids and Ca2+.
    Bodrova ME; Brailovskaya IV; Efron GI; Starkov AA; Mokhova EN
    Biochemistry (Mosc); 2003 Apr; 68(4):391-8. PubMed ID: 12765520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the mitochondrial megachannel by divalent cations and protons.
    Szabó I; Bernardi P; Zoratti M
    J Biol Chem; 1992 Feb; 267(5):2940-6. PubMed ID: 1371109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination between two steps in the mitochondrial permeability transition process.
    Ricchelli F; Jori G; Gobbo S; Nikolov P; Petronilli V
    Int J Biochem Cell Biol; 2005 Sep; 37(9):1858-68. PubMed ID: 15878839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A re-evaluation of the role of matrix acidification in uncoupler-induced Ca2+ release from mitochondria.
    Vajda S; Mándi M; Konràd C; Kiss G; Ambrus A; Adam-Vizi V; Chinopoulos C
    FEBS J; 2009 May; 276(10):2713-24. PubMed ID: 19459934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones.
    Palmeira CM; Wallace KB
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):338-47. PubMed ID: 9144450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-channel currents from diethylpyrocarbonate-modified NMDA receptors in cultured rat brain cortical neurons.
    Donnelly JL; Pallotta BS
    J Gen Physiol; 1995 Jun; 105(6):837-59. PubMed ID: 7561746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria.
    Jung DW; Bradshaw PC; Pfeiffer DR
    J Biol Chem; 1997 Aug; 272(34):21104-12. PubMed ID: 9261114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)-triggered membrane permeability transition in deenergized mitochondria from rat liver.
    Chernyak BV; Dedov VN; Chernyak VYa
    FEBS Lett; 1995 May; 365(1):75-8. PubMed ID: 7539771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.