These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 7683009)
61. Monochromatic synchrotron radiation muCT reveals disuse-mediated canal network rarefaction in cortical bone of growing rat tibiae. Matsumoto T; Yoshino M; Asano T; Uesugi K; Todoh M; Tanaka M J Appl Physiol (1985); 2006 Jan; 100(1):274-80. PubMed ID: 16141381 [TBL] [Abstract][Full Text] [Related]
62. Hypophosphatemic vitamin D resistant rickets (phosphate diabetes): bone mineral problems studied by 125I-computed tomography and microradiography. Exner GU; Prader A; Elsasser U; Rüegsegger P; Anliker M; Steendijk R Helv Paediatr Acta; 1980 Mar; 35(1):39-49. PubMed ID: 6250997 [TBL] [Abstract][Full Text] [Related]
63. Automated cortical bone segmentation for multirow-detector CT imaging with validation and application to human studies. Li C; Jin D; Chen C; Letuchy EM; Janz KF; Burns TL; Torner JC; Levy SM; Saha PK Med Phys; 2015 Aug; 42(8):4553-65. PubMed ID: 26233184 [TBL] [Abstract][Full Text] [Related]
64. Correlation between micro-computed tomography and histomorphometry for assessment of new bone formation in a calvarial experimental model. Yeom H; Blanchard S; Kim S; Zunt S; Chu TM J Craniofac Surg; 2008 Mar; 19(2):446-52. PubMed ID: 18362725 [TBL] [Abstract][Full Text] [Related]
65. Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. Wald MJ; Vasilic B; Saha PK; Wehrli FW Med Phys; 2007 Mar; 34(3):1110-20. PubMed ID: 17441256 [TBL] [Abstract][Full Text] [Related]
66. Micro- and nano-CT for the study of bone ultrastructure. Peyrin F; Dong P; Pacureanu A; Langer M Curr Osteoporos Rep; 2014 Dec; 12(4):465-74. PubMed ID: 25292366 [TBL] [Abstract][Full Text] [Related]
67. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone. Connor DM; Hallen HD; Lalush DS; Sumner DR; Zhong Z Phys Med Biol; 2009 Oct; 54(20):6123-33. PubMed ID: 19779219 [TBL] [Abstract][Full Text] [Related]
68. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone. Lu Y; Engelke K; Glueer CC; Morlock MM; Huber G Proc Inst Mech Eng H; 2014 Nov; 228(11):1208-13. PubMed ID: 25500865 [TBL] [Abstract][Full Text] [Related]
69. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone. Yeni YN; Christopherson GT; Dong XN; Kim DG; Fyhrie DP J Biomech Eng; 2005 Feb; 127(1):1-8. PubMed ID: 15868782 [TBL] [Abstract][Full Text] [Related]
70. A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. Link TM; Majumdar S; Lin JC; Newitt D; Augat P; Ouyang X; Mathur A; Genant HK J Bone Miner Res; 1998 Jan; 13(1):122-32. PubMed ID: 9443798 [TBL] [Abstract][Full Text] [Related]
71. High resolution Ca/P maps of bone architecture in 3D synchrotron radiation microtomographic images. Tzaphlidou M; Speller R; Royle G; Griffiths J; Olivo A; Pani S; Longo R Appl Radiat Isot; 2005 Apr; 62(4):569-75. PubMed ID: 15701411 [TBL] [Abstract][Full Text] [Related]
72. High-resolution three-dimensional-pQCT images can be an adequate basis for in-vivo microFE analysis of bone. Pistoia W; van Rietbergen B; Laib A; Rüegsegger P J Biomech Eng; 2001 Apr; 123(2):176-83. PubMed ID: 11340879 [TBL] [Abstract][Full Text] [Related]
73. A synchrotron radiation microtomography system for the analysis of trabecular bone samples. Salomé M; Peyrin F; Cloetens P; Odet C; Laval-Jeantet AM; Baruchel J; Spanne P Med Phys; 1999 Oct; 26(10):2194-204. PubMed ID: 10535638 [TBL] [Abstract][Full Text] [Related]
74. A new microtomographic technique for non-invasive evaluation of the bone structure around implants. Sennerby L; Wennerberg A; Pasop F Clin Oral Implants Res; 2001 Feb; 12(1):91-4. PubMed ID: 11168276 [TBL] [Abstract][Full Text] [Related]
75. Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus. Shibata T; Nagano T Nat Med; 1996 Aug; 2(8):933-5. PubMed ID: 8705866 [TBL] [Abstract][Full Text] [Related]
76. In vitro evaluation of normal and abnormal lungs with ultra-high-resolution CT. Ikura H; Shimizu K; Ikezoe J; Nagareda T; Yagi N J Thorac Imaging; 2004 Jan; 19(1):8-15. PubMed ID: 14712125 [TBL] [Abstract][Full Text] [Related]
77. Current status of developments and applications of micro-CT. Ritman EL Annu Rev Biomed Eng; 2011 Aug; 13():531-52. PubMed ID: 21756145 [TBL] [Abstract][Full Text] [Related]
78. Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity. Saparin PI; Thomsen JS; Prohaska S; Zaikin A; Kurths J; Hege HC; Gowin W Acta Astronaut; 2005; 56(9-12):820-30. PubMed ID: 15835013 [TBL] [Abstract][Full Text] [Related]
79. Evaluation of bone mineral density using three-dimensional solid state phosphorus-31 NMR projection imaging. Wu Y; Ackerman JL; Chesler DA; Li J; Neer RM; Wang J; Glimcher MJ Calcif Tissue Int; 1998 Jun; 62(6):512-8. PubMed ID: 9576979 [TBL] [Abstract][Full Text] [Related]
80. X-ray microtomography of biological tissues using laboratory and synchrotron sources. Elliott JC; Bowen DK; Dover SD; Davies ST Biol Trace Elem Res; 1987 Aug; 13(1):219-27. PubMed ID: 24254678 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]