These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7683055)
1. Fluorescence energy transfer distance measurements. The hydrophobic helical hairpin of colicin A in the membrane bound state. Lakey JH; Duché D; González-Mañas JM; Baty D; Pattus F J Mol Biol; 1993 Apr; 230(3):1055-67. PubMed ID: 7683055 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants. The membrane insertion of colicin A. Lakey JH; Baty D; Pattus F J Mol Biol; 1991 Apr; 218(3):639-53. PubMed ID: 2016750 [TBL] [Abstract][Full Text] [Related]
3. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Elkins P; Bunker A; Cramer WA; Stauffacher CV Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117 [TBL] [Abstract][Full Text] [Related]
4. Unfolding pathway of the colicin E1 channel protein on a membrane surface. Lindeberg M; Zakharov SD; Cramer WA J Mol Biol; 2000 Jan; 295(3):679-92. PubMed ID: 10623556 [TBL] [Abstract][Full Text] [Related]
5. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. Duché D; Parker MW; González-Mañas JM; Pattus F; Baty D J Biol Chem; 1994 Mar; 269(9):6332-9. PubMed ID: 8119982 [TBL] [Abstract][Full Text] [Related]
6. Structure of the membrane-bound form of the pore-forming domain of colicin A: a partial proteolysis and mass spectrometry study. Massotte D; Yamamoto M; Scianimanico S; Sorokine O; van Dorsselaer A; Nakatani Y; Ourisson G; Pattus F Biochemistry; 1993 Dec; 32(50):13787-94. PubMed ID: 8268153 [TBL] [Abstract][Full Text] [Related]
7. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Zakharov SD; Lindeberg M; Griko Y; Salamon Z; Tollin G; Prendergast FG; Cramer WA Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4282-7. PubMed ID: 9539728 [TBL] [Abstract][Full Text] [Related]
8. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel. Ho D; Merrill AR Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330 [TBL] [Abstract][Full Text] [Related]
9. Membrane-bound form of the pore-forming domain of colicin A. A neutron scattering study. Jeanteur D; Pattus F; Timmins PA J Mol Biol; 1994 Jan; 235(3):898-907. PubMed ID: 7507175 [TBL] [Abstract][Full Text] [Related]
10. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. White D; Musse AA; Wang J; London E; Merrill AR J Biol Chem; 2006 Oct; 281(43):32375-84. PubMed ID: 16854987 [TBL] [Abstract][Full Text] [Related]
11. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein. Zakharov SD; Lindeberg M; Cramer WA Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282 [TBL] [Abstract][Full Text] [Related]
12. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
13. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. Lakey JH; Massotte D; Heitz F; Dasseux JL; Faucon JF; Parker MW; Pattus F Eur J Biochem; 1991 Mar; 196(3):599-607. PubMed ID: 2013283 [TBL] [Abstract][Full Text] [Related]
14. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin. Bermejo IL; Arnulphi C; Ibáñez de Opakua A; Alonso-Mariño M; Goñi FM; Viguera AR Biophys J; 2013 Sep; 105(6):1432-43. PubMed ID: 24047995 [TBL] [Abstract][Full Text] [Related]
15. Folded state of the integral membrane colicin E1 immunity protein in solvents of mixed polarity. Taylor RM; Zakharov SD; Bernard Heymann J; Girvin ME; Cramer WA Biochemistry; 2000 Oct; 39(40):12131-9. PubMed ID: 11015191 [TBL] [Abstract][Full Text] [Related]
16. Tilted, extended, and lying in wait: the membrane-bound topology of residues Lys-381-Ser-405 of the colicin E1 channel domain. Wei Z; White D; Wang J; Musse AA; Merrill AR Biochemistry; 2007 May; 46(20):6074-85. PubMed ID: 17455912 [TBL] [Abstract][Full Text] [Related]
17. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR. Luo W; Yao X; Hong M J Am Chem Soc; 2005 May; 127(17):6402-8. PubMed ID: 15853348 [TBL] [Abstract][Full Text] [Related]
18. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1. Tory MC; Merrill AR J Biol Chem; 1999 Aug; 274(35):24539-49. PubMed ID: 10455117 [TBL] [Abstract][Full Text] [Related]
19. Intramembrane helix-helix interactions as the basis of inhibition of the colicin E1 ion channel by its immunity protein. Zhang YL; Cramer WA J Biol Chem; 1993 May; 268(14):10176-84. PubMed ID: 7683669 [TBL] [Abstract][Full Text] [Related]
20. Membrane topology of the colicin A pore-forming domain analyzed by disulfide bond engineering. Duché D; Izard J; González-Mañas JM; Parker MW; Crest M; Chartier M; Baty D J Biol Chem; 1996 Jun; 271(26):15401-6. PubMed ID: 8663026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]