These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7683091)

  • 1. Double-strand breaks in plasmid DNA and the induction of deletions.
    Schulte-Frohlinde D; Worm KH; Merz M
    Mutat Res; 1993 May; 299(3-4):233-50. PubMed ID: 7683091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of the plasmid pBR322 damaged by gamma-irradiation or by restriction endonucleases using different recombination-proficient E. coli strains.
    Bien M; Steffen H; Schulte-Frohlinde D
    Mutat Res; 1988 Nov; 194(3):193-205. PubMed ID: 2847036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system.
    Dar ME; Jorgensen TJ
    Nucleic Acids Res; 1995 Aug; 23(16):3224-30. PubMed ID: 7545284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA double-strand breaks induce deletion of CTG.CAG repeats in an orientation-dependent manner in Escherichia coli.
    Hebert ML; Spitz LA; Wells RD
    J Mol Biol; 2004 Feb; 336(3):655-72. PubMed ID: 15095979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple pathways of deletion formation in Escherichia coli.
    Balbinder E
    Mutat Res; 1993 May; 299(3-4):193-209. PubMed ID: 7683087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of DNA repeats in Escherichia coli dam mutant strains indicates a Dam methylation-dependent DNA deletion process.
    Troester H; Bub S; Hunziker A; Trendelenburg MF
    Gene; 2000 Nov; 258(1-2):95-108. PubMed ID: 11111047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of double-strand breaks, nicks, and gaps in stimulating deletions of CTG.CAG repeats by intramolecular DNA repair.
    Hebert ML; Wells RD
    J Mol Biol; 2005 Nov; 353(5):961-79. PubMed ID: 16213518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of uracil residues closely spaced on the opposite strands of plasmid DNA results in double-strand break and deletion formation.
    Dianov GL; Timchenko TV; Sinitsina OI; Kuzminov AV; Medvedev OA; Salganik RI
    Mol Gen Genet; 1991 Mar; 225(3):448-52. PubMed ID: 2017139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligonucleotide-directed double-strand break repair in plasmids of Escherichia coli: a method for site-specific mutagenesis.
    Mandecki W
    Proc Natl Acad Sci U S A; 1986 Oct; 83(19):7177-81. PubMed ID: 3532104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids.
    Bowater RP; Rosche WA; Jaworski A; Sinden RR; Wells RD
    J Mol Biol; 1996 Nov; 264(1):82-96. PubMed ID: 8950269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms involved in rejoining DNA double-strand breaks induced by ionizing radiation and restriction enzymes.
    Lutze LH; Cleaver JE; Morgan WF; Winegar RA
    Mutat Res; 1993 May; 299(3-4):225-32. PubMed ID: 7683090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slipped misalignment mechanisms of deletion formation: analysis of deletion endpoints.
    Feschenko VV; Lovett ST
    J Mol Biol; 1998 Feb; 276(3):559-69. PubMed ID: 9551097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism.
    Lovett ST; Gluckman TJ; Simon PJ; Sutera VA; Drapkin PT
    Mol Gen Genet; 1994 Nov; 245(3):294-300. PubMed ID: 7816039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncomplementary DNA double-strand-break rejoining in bacterial and human cells.
    King JS; Valcarcel ER; Rufer JT; Phillips JW; Morgan WF
    Nucleic Acids Res; 1993 Mar; 21(5):1055-9. PubMed ID: 8464692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of primary and secondary DNA structure in deletion and duplication between direct repeats in Escherichia coli.
    Trinh TQ; Sinden RR
    Genetics; 1993 Jun; 134(2):409-22. PubMed ID: 8325478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion between direct repeats in T7 DNA stimulated by double-strand breaks.
    Kong D; Masker W
    J Bacteriol; 1994 Oct; 176(19):5904-11. PubMed ID: 7928950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair and misrepair of site-specific DNA double-strand breaks by human cell extracts.
    Ganesh A; North P; Thacker J
    Mutat Res; 1993 May; 299(3-4):251-9. PubMed ID: 7683092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fidelity of primate cell repair of a double-strand break within a (CTG).(CAG) tract. Effect of slipped DNA structures.
    Marcadier JL; Pearson CE
    J Biol Chem; 2003 Sep; 278(36):33848-56. PubMed ID: 12807901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of RecB-mediated (but not RecF-mediated) repair of DNA double-strand breaks in the gamma-radiation production of long deletions in Escherichia coli.
    Sargentini NJ; Smith KC
    Mutat Res; 1992 Jan; 265(1):83-101. PubMed ID: 1370245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability.
    Parniewski P; Jaworski A; Wells RD; Bowater RP
    J Mol Biol; 2000 Jun; 299(4):865-74. PubMed ID: 10843843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.