These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparison of growth on mannitol salt agar, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, VITEK Ayeni FA; Andersen C; Nørskov-Lauritsen N Microb Pathog; 2017 Apr; 105():255-259. PubMed ID: 28254444 [TBL] [Abstract][Full Text] [Related]
3. Identification of Staphylococcus carnosus and Staphylococcus warneri isolated from meat by fluorescent in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Gory L; Millet L; Godon JJ; Montel MC Syst Appl Microbiol; 1999 May; 22(2):225-8. PubMed ID: 10390873 [TBL] [Abstract][Full Text] [Related]
4. Molecular detection of enterotoxins E, G, H and I in Staphylococcus aureus and coagulase-negative staphylococci isolated from clinical samples of newborns in Brazil. Vasconcelos NG; Pereira VC; Araújo Júnior JP; da Cunha Mde L J Appl Microbiol; 2011 Sep; 111(3):749-62. PubMed ID: 21672099 [TBL] [Abstract][Full Text] [Related]
5. Differentiation of Staphylococcus spp. by high-resolution melting analysis. Slany M; Vanerkova M; Nemcova E; Zaloudikova B; Ruzicka F; Freiberger T Can J Microbiol; 2010 Dec; 56(12):1040-9. PubMed ID: 21164574 [TBL] [Abstract][Full Text] [Related]
7. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. Ghebremedhin B; Layer F; König W; König B J Clin Microbiol; 2008 Mar; 46(3):1019-25. PubMed ID: 18174295 [TBL] [Abstract][Full Text] [Related]
8. Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. Goh SH; Santucci Z; Kloos WE; Faltyn M; George CG; Driedger D; Hemmingsen SM J Clin Microbiol; 1997 Dec; 35(12):3116-21. PubMed ID: 9399505 [TBL] [Abstract][Full Text] [Related]
9. Identification of coagulase-negative staphylococci other than Staphylococcus epidermidis by automated ribotyping. Carretto E; Barbarini D; Couto I; De Vitis D; Marone P; Verhoef J; De Lencastre H; Brisse S Clin Microbiol Infect; 2005 Mar; 11(3):177-84. PubMed ID: 15715714 [TBL] [Abstract][Full Text] [Related]
10. Application of current methods for isolation and identification of staphylococci in raw bovine milk. Harvey J; Gilmour A J Appl Bacteriol; 1985 Sep; 59(3):207-21. PubMed ID: 3902759 [TBL] [Abstract][Full Text] [Related]
11. Oligonucleotide probes for Bordetella bronchiseptica based on 16S ribosomal RNA sequences. Taneda A; Futo S; Mitsuse S; Seto Y; Okada M; Sakano T Vet Microbiol; 1994 Dec; 42(4):297-305. PubMed ID: 9133055 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Kwok AYC; Chow AW Int J Syst Evol Microbiol; 2003 Jan; 53(Pt 1):87-92. PubMed ID: 12656157 [TBL] [Abstract][Full Text] [Related]
13. Automated ribotyping to distinguish the different non Sau/ non Sep staphylococcal emerging pathogens in orthopedic implant infections. Campoccia D; Baldassarri L; An YH; Kang QK; Pirini V; Gamberini S; Pegreffi F; Montanaro L; Arciola CR Int J Artif Organs; 2006 Apr; 29(4):421-9. PubMed ID: 16705611 [TBL] [Abstract][Full Text] [Related]
14. Identification of coagulase-negative staphylococci from farm animals. Devriese LA; Schleifer KH; Adegoke GO J Appl Bacteriol; 1985 Jan; 58(1):45-55. PubMed ID: 3980296 [TBL] [Abstract][Full Text] [Related]
15. Species-specific oligonucleotide probes for rRNA of Clostridium difficile and related species. Wilson KH; Blitchington R; Hindenach B; Greene RC J Clin Microbiol; 1988 Dec; 26(12):2484-8. PubMed ID: 3230127 [TBL] [Abstract][Full Text] [Related]
16. Identification of Staphylococcus epidermidis using a 16S rRNA-directed oligonucleotide probe. Zakrzewska-Czerwińska J; Gaszewska-Mastalarz A; Pulverer G; Mordarski M FEMS Microbiol Lett; 1992 Dec; 100(1-3):51-8. PubMed ID: 1282487 [TBL] [Abstract][Full Text] [Related]
17. The development of specific rRNA-derived oligonucleotide probes for Haemophilus ducreyi, the causative agent of chancroid. Rossau R; Duhamel M; Jannes G; Decourt JL; Van Heuverswyn H J Gen Microbiol; 1991 Feb; 137(2):277-85. PubMed ID: 1707945 [TBL] [Abstract][Full Text] [Related]
18. Genetic identification of Staphylococcus aureus by polymerase chain reaction using single-base-pair mismatch in 16S ribosomal RNA gene. Saruta K; Hoshina S; Machida K Microbiol Immunol; 1995; 39(11):839-44. PubMed ID: 8657010 [TBL] [Abstract][Full Text] [Related]
19. Rapid, species-specific detection of uropathogen 16S rDNA and rRNA at ambient temperature by dot-blot hybridization and an electrochemical sensor array. Sun CP; Liao JC; Zhang YH; Gau V; Mastali M; Babbitt JT; Grundfest WS; Churchill BM; McCabe ER; Haake DA Mol Genet Metab; 2005 Jan; 84(1):90-9. PubMed ID: 15639199 [TBL] [Abstract][Full Text] [Related]
20. Specific 16S ribosomal RNA targeted oligonucleotide probe against Clavibacter michiganensis subsp. sepedonicus. Mirza MS; Rademaker JL; Janse JD; Akkermans AD Can J Microbiol; 1993 Nov; 39(11):1029-34. PubMed ID: 7508333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]