These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 7683272)

  • 41. [Rearrangement of the morphological structure and degradation of the extracellular matrix in amphibian embryos after short-term disruption of cell contacts].
    Georgiev PG; Belousov LV
    Ontogenez; 1987; 18(5):535-40. PubMed ID: 3696679
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The switch from larval to adult globin gene expression in Xenopus laevis is mediated by erythroid cells from distinct compartments.
    Weber R; Blum B; Müller PR
    Development; 1991 Aug; 112(4):1021-9. PubMed ID: 1935695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Xenopus laevis cement gland as an experimental model for embryonic differentiation. I. In vitro stimulation of differentiation by ammonium chloride.
    Picard JJ
    J Embryol Exp Morphol; 1975 Jul; 33(4):957-67. PubMed ID: 240903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Properties of the primary organization field in the embryo of Xenopus laevis. 3. Retention of polarity in cell groups excised from the region of the early organizer.
    Cooke J
    J Embryol Exp Morphol; 1972 Aug; 28(1):47-56. PubMed ID: 5074321
    [No Abstract]   [Full Text] [Related]  

  • 45. Hemopoietic differentiation potential of cultured lateral plate mesoderm explanted from Rana pipiens embryos at successive developmental stages.
    Smith PB; Turpen JB
    Differentiation; 1985; 28(3):244-9. PubMed ID: 3873367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Occurrence of nonlymphoid leukocytes that are not derived from blood islands in Xenopus laevis larvae.
    Ohinata H; Tochinai S; Katagiri C
    Dev Biol; 1990 Sep; 141(1):123-9. PubMed ID: 2202604
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Xenopus laevis Keller Explants.
    Sive HL; Grainger RM; Harland RM
    CSH Protoc; 2007 Jun; 2007():pdb.prot4749. PubMed ID: 21357097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two transitions of haemoglobin expression in Xenopus: from embryonic to larval and from larval to adult.
    Kobel HR; Wolff J
    Differentiation; 1983; 24(1):24-6. PubMed ID: 6873521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular polarity in cultured animal pole cells of Xenopus embryos.
    Asada-Kubota M
    J Ultrastruct Mol Struct Res; 1989 Dec; 102(3):265-75. PubMed ID: 2634710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Effect of thiamphenicol on the erythropoietic process].
    Garavini C
    Arch Ital Anat Embriol; 1982; 87(1):29-38. PubMed ID: 7181609
    [No Abstract]   [Full Text] [Related]  

  • 51. Identification of a heparin-binding, mesoderm-inducing peptide in the swim-bladder of the red seabream, Pagrus major: a probable fish fibroblast growth factor.
    Suzuki T; Kurokawa T; Asashima M
    Fish Physiol Biochem; 1994 Oct; 13(4):343-52. PubMed ID: 24198214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative performance of cell life span and cell transit models for describing erythropoietic drug effects.
    Budha NR; Kovar A; Meibohm B
    AAPS J; 2011 Dec; 13(4):650-61. PubMed ID: 22005901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The pathology of the ground substance of the mesenchyme.
    BOYD W
    Hawaii Med J; 1952; 11(6):353-7. PubMed ID: 12989751
    [No Abstract]   [Full Text] [Related]  

  • 54. [Morphological reactions of active mesenchyma as an expression of a definite immunobiological defense situation].
    BILLERBECK K
    Arztl Forsch; 1953 Jul; 7(7):I/303-19. PubMed ID: 13091940
    [No Abstract]   [Full Text] [Related]  

  • 55. COMPOSITION OF THE MESODERM.
    Minot CS
    Science; 1883 Jul; 2(22):11. PubMed ID: 17782174
    [No Abstract]   [Full Text] [Related]  

  • 56. Ectodermally derived steel/stem cell factor functions non-cell autonomously during primitive erythropoiesis in Xenopus.
    Goldman DC; Berg LK; Heinrich MC; Christian JL
    Blood; 2006 Apr; 107(8):3114-21. PubMed ID: 16357321
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Murine stem cell factor stimulates erythropoietic differentiation of ventral mesoderm in Xenopus gastrula embryo.
    Ong RC; Maéno M; Kung HF
    Exp Cell Res; 1993 Apr; 205(2):326-30. PubMed ID: 7683272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue.
    Maéno M; Ong RC; Xue Y; Nishimatsu S; Ueno N; Kung HF
    Dev Biol; 1994 Feb; 161(2):522-9. PubMed ID: 8313998
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.