BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7683366)

  • 1. Antisense RNA mediates transcriptional processing in an archaebacterium, indicating a novel kind of RNase activity.
    Stolt P; Zillig W
    Mol Microbiol; 1993 Mar; 7(6):875-82. PubMed ID: 7683366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure specific ds/ss-RNase activity in the extreme halophile Halobacterium salinarium.
    Stolt P; Zillig W
    Nucleic Acids Res; 1993 Dec; 21(24):5595-9. PubMed ID: 7506828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genes for DNA cytosine methyltransferases and structural proteins, expressed during lytic growth by the phage phi H of the archaebacterium Halobacterium salinarium.
    Stolt P; Grampp B; Zillig W
    Biol Chem Hoppe Seyler; 1994 Nov; 375(11):747-57. PubMed ID: 7695837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repression of lipopolysaccharide biosynthesis in Escherichia coli by an antisense RNA of Acetobacter methanolicus phage Acm1.
    Mamat U; Rietschel ET; Schmidt G
    Mol Microbiol; 1995 Mar; 15(6):1115-25. PubMed ID: 7542725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo studies on the effects of immunity genes on early lytic transcription in the Halobacterium salinarium phage phi H.
    Stolt P; Zillig W
    Mol Gen Genet; 1992 Nov; 235(2-3):197-204. PubMed ID: 1465093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI.
    Greenfield TJ; Franch T; Gerdes K; Weaver KE
    Mol Microbiol; 2001 Oct; 42(2):527-37. PubMed ID: 11703673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halobacterium halobium strains lysogenic for phage phi H contain a protein resembling coliphage repressors.
    Ken R; Hackett NR
    J Bacteriol; 1991 Feb; 173(3):955-60. PubMed ID: 1991733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in vitro analysis of transcription of the L region from the Halobacterium salinarium phage phi H: definition of a repressor-enhancing gene.
    Stolt P; Zillig W
    Virology; 1993 Aug; 195(2):649-58. PubMed ID: 8337836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription of the halophage phi H repressor gene is abolished by transcription from an inversely oriented lytic promoter.
    Stolt P; Zillig W
    FEBS Lett; 1994 May; 344(2-3):125-8. PubMed ID: 8187870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttranscriptional control of the lysogenic pathway in bacteriophage lambda.
    Oppenheim AB; Kornitzer D; Altuvia S; Court DL
    Prog Nucleic Acid Res Mol Biol; 1993; 46():37-49. PubMed ID: 8234786
    [No Abstract]   [Full Text] [Related]  

  • 11. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E.
    Jerome LJ; van Biesen T; Frost LS
    J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The immunity-conferring plasmid p phi HL from the Halobacterium salinarium phage phi H: nucleotide sequence and transcription.
    Gropp F; Grampp B; Stolt P; Palm P; Zillig W
    Virology; 1992 Sep; 190(1):45-54. PubMed ID: 1529545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the small antisense CI RNA that regulates bacteriophage P4 immunity.
    Forti F; Dragoni I; Briani F; Dehò G; Ghisotti D
    J Mol Biol; 2002 Jan; 315(4):541-9. PubMed ID: 11812128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA processing in prokaryotic cells.
    Apirion D; Miczak A
    Bioessays; 1993 Feb; 15(2):113-20. PubMed ID: 7682412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable hok, srnB and pndA effector messenger RNAs.
    Gerdes K; Nielsen A; Thorsted P; Wagner EG
    J Mol Biol; 1992 Aug; 226(3):637-49. PubMed ID: 1380562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separate pathways for excision and processing of 16S and 23S rRNA from the primary rRNA operon transcript from the hyperthermophilic archaebacterium Sulfolobus acidocaldarius: similarities to eukaryotic rRNA processing.
    Durovic P; Dennis PP
    Mol Microbiol; 1994 Jul; 13(2):229-42. PubMed ID: 7527119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3'-end triggers structural rearrangements that allow translation and antisense RNA binding.
    Franch T; Gultyaev AP; Gerdes K
    J Mol Biol; 1997 Oct; 273(1):38-51. PubMed ID: 9367744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide antisense transcription drives mRNA processing in bacteria.
    Lasa I; Toledo-Arana A; Dobin A; Villanueva M; de los Mozos IR; Vergara-Irigaray M; Segura V; Fagegaltier D; Penadés JR; Valle J; Solano C; Gingeras TR
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):20172-7. PubMed ID: 22123973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of polyadenylation and nucleolytic cleavage in the filamentous phage mRNA processing and decay pathways in Escherichia coli.
    Goodrich AF; Steege DA
    RNA; 1999 Jul; 5(7):972-85. PubMed ID: 10411140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli.
    Hartmann RK; Heinrich J; Schlegl J; Schuster H
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5822-6. PubMed ID: 7597035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.