These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 7683467)
21. Osteoblasts-derived BMP-2 enhances the motility of prostate cancer cells via activation of integrins. Lai TH; Fong YC; Fu WM; Yang RS; Tang CH Prostate; 2008 Sep; 68(12):1341-53. PubMed ID: 18512729 [TBL] [Abstract][Full Text] [Related]
22. Beta-2 microglobulin is mitogenic to PC-3 prostatic carcinoma cells and antagonistic to transforming growth factor beta 1 action. Rowley DR; Dang TD; McBride L; Gerdes MJ; Lu B; Larsen M Cancer Res; 1995 Feb; 55(4):781-6. PubMed ID: 7850789 [TBL] [Abstract][Full Text] [Related]
23. Cellular response to latent TGF-beta1 is facilitated by insulin-like growth factor-II/mannose-6-phosphate receptors on MS-9 cells. Ghahary A; Tredget EE; Mi L; Yang L Exp Cell Res; 1999 Aug; 251(1):111-20. PubMed ID: 10438576 [TBL] [Abstract][Full Text] [Related]
24. Osteoblast-derived growth factors enhance adriamycin-cytostasis of MCF-7 human breast cancer cells. Choki I; Sourla A; Reyes-Moreno C; Koutsilieris M Anticancer Res; 1998; 18(6A):4213-24. PubMed ID: 9891470 [TBL] [Abstract][Full Text] [Related]
25. TGF beta alters growth and differentiation related gene expression in proliferating osteoblasts in vitro, preventing development of the mature bone phenotype. Breen EC; Ignotz RA; McCabe L; Stein JL; Stein GS; Lian JB J Cell Physiol; 1994 Aug; 160(2):323-35. PubMed ID: 8040190 [TBL] [Abstract][Full Text] [Related]
26. TGF-beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells. Zhu ML; Partin JV; Bruckheimer EM; Strup SE; Kyprianou N Prostate; 2008 Feb; 68(3):287-95. PubMed ID: 18163430 [TBL] [Abstract][Full Text] [Related]
27. Proteolytic activation of latent TGF-beta precedes caspase-3 activation and enhances apoptotic death of lung epithelial cells. Solovyan VT; Keski-Oja J J Cell Physiol; 2006 May; 207(2):445-53. PubMed ID: 16447253 [TBL] [Abstract][Full Text] [Related]
28. Cell-associated activation of latent transforming growth factor-beta by calpain. Abe M; Oda N; Sato Y J Cell Physiol; 1998 Feb; 174(2):186-93. PubMed ID: 9428805 [TBL] [Abstract][Full Text] [Related]
29. Prostaglandin E2 enhances transforming growth factor-beta 1 and TGF-beta receptors synthesis: an in vivo and in vitro study. Ramirez-YaƱez GO; Hamlet S; Jonarta A; Seymour GJ; Symons AL Prostaglandins Leukot Essent Fatty Acids; 2006 Mar; 74(3):183-92. PubMed ID: 16504491 [TBL] [Abstract][Full Text] [Related]
30. Autocrine regulation of prostate-specific antigen gene expression in a human prostatic cancer (LNCaP) subline. Hsieh JT; Wu HC; Gleave ME; von Eschenbach AC; Chung LW Cancer Res; 1993 Jun; 53(12):2852-7. PubMed ID: 7684949 [TBL] [Abstract][Full Text] [Related]
32. Indirect mitogenic effect of transforming growth factor-beta on cell proliferation of subconjunctival fibroblasts. Kay EP; Lee HK; Park KS; Lee SC Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):481-6. PubMed ID: 9501857 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Joyce NC; Harris DL; Mello DM Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2152-9. PubMed ID: 12091410 [TBL] [Abstract][Full Text] [Related]
34. Growth factor regulation of secreted matrix metalloproteinase and plasminogen activators in prostate cancer cells, normal prostate fibroblasts and normal osteoblasts. Forbes K; Webb MA; Sehgal I Prostate Cancer Prostatic Dis; 2003; 6(2):148-53. PubMed ID: 12806374 [TBL] [Abstract][Full Text] [Related]
35. The Potentiality of Prostate-Specific Antigen as a Prognostic Biomarker in Breast Cancer. Bouaod W; Zakoko AM; Asif H; Hussain A; Malik N; Ray SD; Peela J; Teja Peela AS; Jarari AM Cureus; 2023 Sep; 15(9):e44621. PubMed ID: 37799254 [TBL] [Abstract][Full Text] [Related]
36. Tumor Microenvironment, Clinical Features, and Advances in Therapy for Bone Metastasis in Gastric Cancer. Sun P; Antwi SO; Sartorius K; Zheng X; Li X Cancers (Basel); 2022 Oct; 14(19):. PubMed ID: 36230816 [TBL] [Abstract][Full Text] [Related]
37. A Suite of Activity-Based Probes To Dissect the KLK Activome in Drug-Resistant Prostate Cancer. Lovell S; Zhang L; Kryza T; Neodo A; Bock N; De Vita E; Williams ED; Engelsberger E; Xu C; Bakker AT; Maneiro M; Tanaka RJ; Bevan CL; Clements JA; Tate EW J Am Chem Soc; 2021 Jun; 143(23):8911-8924. PubMed ID: 34085829 [TBL] [Abstract][Full Text] [Related]
38. KLK4 Induces Anti-Tumor Effects in Human Xenograft Mouse Models of Orthotopic and Metastatic Prostate Cancer. Tse BW; Kryza T; Yeh MC; Dong Y; Sokolowski KA; Walpole C; Dreyer T; Felber J; Harris J; Magdolen V; Russell PJ; Clements JA Cancers (Basel); 2020 Nov; 12(12):. PubMed ID: 33255452 [TBL] [Abstract][Full Text] [Related]
39. Molecular mechanisms and clinical management of cancer bone metastasis. Wang M; Xia F; Wei Y; Wei X Bone Res; 2020; 8(1):30. PubMed ID: 32793401 [TBL] [Abstract][Full Text] [Related]
40. Role of the Bone Microenvironment in the Development of Painful Complications of Skeletal Metastases. Park SH; Eber MR; Widner DB; Shiozawa Y Cancers (Basel); 2018 May; 10(5):. PubMed ID: 29747461 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]