These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7683490)

  • 21. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction.
    McConnell TS; Herschlag D; Cech TR
    Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site.
    Been MD; Perrotta AT
    Science; 1991 Apr; 252(5004):434-7. PubMed ID: 2017681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4-P6 domain.
    Basu S; Strobel SA
    RNA; 1999 Nov; 5(11):1399-407. PubMed ID: 10580468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two universally conserved adenosines of the group I intron that are important for self-splicing but not for core catalytic activity.
    Williams KP; Fujimoto DN; Inoue T
    J Biochem; 1994 Jan; 115(1):126-30. PubMed ID: 8188618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site.
    Downs WD; Cech TR
    Genes Dev; 1994 May; 8(10):1198-211. PubMed ID: 7926724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal ion catalysis during splicing of premessenger RNA.
    Sontheimer EJ; Sun S; Piccirilli JA
    Nature; 1997 Aug; 388(6644):801-5. PubMed ID: 9285595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A region of group I introns that contains universally conserved residues but is not essential for self-splicing.
    Williams KP; Fujimoto DN; Inoue T
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10400-4. PubMed ID: 1279677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The environment of two metal ions surrounding the splice site of a group I intron.
    Streicher B; Westhof E; Schroeder R
    EMBO J; 1996 May; 15(10):2556-64. PubMed ID: 8665863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns.
    Allain FH; Varani G
    Nucleic Acids Res; 1995 Feb; 23(3):341-50. PubMed ID: 7885828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-splicing of Tetrahymena rRNA can proceed with phosphorothioate substitution at the splice sites.
    Deeney CM; Eperon IC; Potter BV
    Nucleic Acids Symp Ser; 1987; (18):277-80. PubMed ID: 3697141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction.
    Shan S; Kravchuk AV; Piccirilli JA; Herschlag D
    Biochemistry; 2001 May; 40(17):5161-71. PubMed ID: 11318638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A phosphorothioate at the 3' splice-site inhibits the second splicing step in a group I intron.
    Suh E; Waring RB
    Nucleic Acids Res; 1992 Dec; 20(23):6303-9. PubMed ID: 1282238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction.
    Shan SO; Herschlag D
    RNA; 2000 Jun; 6(6):795-813. PubMed ID: 10864040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution.
    Yoshida A; Sun S; Piccirilli JA
    Nat Struct Biol; 1999 Apr; 6(4):318-21. PubMed ID: 10201397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal ion binding sites in a group II intron core.
    Sigel RK; Vaidya A; Pyle AM
    Nat Struct Biol; 2000 Dec; 7(12):1111-6. PubMed ID: 11101891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding.
    Erat MC; Besic E; Oberhuber M; Johannsen S; Sigel RKO
    J Biol Inorg Chem; 2018 Jan; 23(1):167-177. PubMed ID: 29218637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.