These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 7683620)
1. Degradation of Aroclor 1221 in soil by a hybrid pseudomonad. Havel J; Reineke W FEMS Microbiol Lett; 1993 Apr; 108(2):211-7. PubMed ID: 7683620 [TBL] [Abstract][Full Text] [Related]
2. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains. Stratford J; Wright MA; Reineke W; Mokross H; Havel J; Knowles CJ; Robinson GK Arch Microbiol; 1996 Mar; 165(3):213-8. PubMed ID: 8599540 [TBL] [Abstract][Full Text] [Related]
3. Aroclor 1221 aerobic dechlorination by a bacterial co-culture: role of chlorobenzoic acid degrading bacteria in the process. Fava F Chemosphere; 1996 Apr; 32(8):1477-83. PubMed ID: 8653386 [TBL] [Abstract][Full Text] [Related]
4. 2-Chlorobenzoate biodegradation by recombinant Burkholderia cepacia under hypoxic conditions in a membrane bioreactor. Urgun-Demirtas M; Stark B; Pagilla K Water Environ Res; 2005; 77(5):511-8. PubMed ID: 16274085 [TBL] [Abstract][Full Text] [Related]
5. Efficiency of chlorocatechol metabolism in natural and constructed chlorobenzoate and chlorobiphenyl degraders. Brenner V; Rucká L; Totevová S; Tømeraas K; Demnerová K J Appl Microbiol; 2004; 96(3):430-6. PubMed ID: 14962122 [TBL] [Abstract][Full Text] [Related]
6. Enhanced kinetics of genetically engineered Burkholderia cepacia: the role of vgb in the hypoxic metabolism of 2-CBA. Urgun-Demirtas M; Pagilla KR; Stark BC Biotechnol Bioeng; 2004 Jul; 87(1):110-8. PubMed ID: 15211495 [TBL] [Abstract][Full Text] [Related]
7. Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. Mokross H; Schmidt E; Reineke W FEMS Microbiol Lett; 1990 Sep; 59(1-2):179-85. PubMed ID: 2276606 [TBL] [Abstract][Full Text] [Related]
8. The influence of moisture on microbial transport, survival and 2,4-D biodegradation with a genetically marked Burkholderia cepacia in unsaturated soil columns. Cattaneo MV; Masson C; Greer CW Biodegradation; 1997; 8(2):87-96. PubMed ID: 9342881 [TBL] [Abstract][Full Text] [Related]
9. Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in soil inoculated with Pseudomonas cepacia DBO1(pRO101), Alcaligenes eutrophus AEO106(pRO101) and Alcaligenes eutrophus JMP134(pJP4): effects of inoculation level and substrate concentration. Jacobsen CS; Pedersen JC Biodegradation; 1991-1992; 2(4):253-63. PubMed ID: 1282056 [TBL] [Abstract][Full Text] [Related]
10. Growth and survival of Pseudomonas cepacia DBO1 (pRO101) in soil amended with 2,4-dichlorophenoxyacetic acid. Jacobsen CS; Pedersen JC Biodegradation; 1991-1992; 2(4):245-52. PubMed ID: 1282055 [TBL] [Abstract][Full Text] [Related]
11. Comparison of 2-chlorobenzoic acid biodegradation in a membrane bioreactor by B. cepacia and B. cepacia bearing the bacterial hemoglobin gene. Urgun-Demirtas M; Stark BC; Pagilla KR Water Res; 2006 Sep; 40(16):3123-3130. PubMed ID: 16876227 [TBL] [Abstract][Full Text] [Related]
12. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Sierra I; Valera JL; Marina ML; Laborda F Chemosphere; 2003 Nov; 53(6):609-18. PubMed ID: 12962710 [TBL] [Abstract][Full Text] [Related]
13. Microbial community structure changes during Aroclor 1242 degradation in the rhizosphere of ryegrass (Lolium multiflorum L.). Ding N; Guo H; Hayat T; Wu Y; Xu J FEMS Microbiol Ecol; 2009 Nov; 70(2):149-58. PubMed ID: 19663919 [TBL] [Abstract][Full Text] [Related]
14. [Isolation, identification and degradation characterization of a polychlorinated biphenyls-degrading bacterium Pseudomonas sp. DN2]. Ren HJ; Gao S; Zhang YL; Liu N; Zhang LY; Zhou R; Deng YZ Huan Jing Ke Xue; 2009 Mar; 30(3):858-63. PubMed ID: 19432341 [TBL] [Abstract][Full Text] [Related]
15. A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Arensdorf JJ; Focht DD Appl Environ Microbiol; 1995 Feb; 61(2):443-7. PubMed ID: 7574580 [TBL] [Abstract][Full Text] [Related]
16. A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates. Kim S; Picardal FW FEMS Microbiol Lett; 2000 Apr; 185(2):225-9. PubMed ID: 10754252 [TBL] [Abstract][Full Text] [Related]
17. Degradation of 2-chlorobenzoic and 2,5-dichlorobenzoic acids in soil columns by Pseudomonas stutzeri. Kozlovsky SA; Zaitsev GM; Kunc F Folia Microbiol (Praha); 1993; 38(5):376-8. PubMed ID: 8262447 [TBL] [Abstract][Full Text] [Related]
18. Degradation of 3-chlorobenzoate in soil by pseudomonads carrying biodegradative plasmids. Pertsova RN; Kunc F; Golovleva LA Folia Microbiol (Praha); 1984; 29(3):242-7. PubMed ID: 6745818 [TBL] [Abstract][Full Text] [Related]
19. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Arensdorf JJ; Focht DD Appl Environ Microbiol; 1994 Aug; 60(8):2884-9. PubMed ID: 7521996 [TBL] [Abstract][Full Text] [Related]
20. Extensive biodegradation of polychlorinated biphenyls in Aroclor 1242 and electrical transformer fluid (Askarel) by natural strains of microorganisms indigenous to contaminated African systems. Adebusoye SA; Ilori MO; Picardal FW; Amund OO Chemosphere; 2008 Aug; 73(1):126-32. PubMed ID: 18550146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]