These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 7683878)
1. An examination of the inhibitory mechanism of serpins by analysing the interaction of trypsin and chymotrypsin with alpha 2-antiplasmin. Enghild JJ; Valnickova Z; Thøgersen IB; Pizzo SV; Salvesen G Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):933-8. PubMed ID: 7683878 [TBL] [Abstract][Full Text] [Related]
2. The use of alpha 2-antiplasmin as a model for the demonstration of complex reversibility in serpins. Shieh BH; Potempa J; Travis J J Biol Chem; 1989 Aug; 264(23):13420-3. PubMed ID: 2474530 [TBL] [Abstract][Full Text] [Related]
3. Antigenic determinants and reactive sites of a trypsin/chymotrypsin double-headed inhibitor from horse gram (Dolichos biflorus). Sreerama YN; Gowda LR Biochim Biophys Acta; 1997 Dec; 1343(2):235-42. PubMed ID: 9434114 [TBL] [Abstract][Full Text] [Related]
4. The primary elastase inhibitor (elastasin) and trypsin inhibitor (contrapsin) in the goat are serpins related to human alpha 1-anti-chymotrypsin. Potempa J; Enghild JJ; Travis J Biochem J; 1995 Feb; 306 ( Pt 1)(Pt 1):191-7. PubMed ID: 7864809 [TBL] [Abstract][Full Text] [Related]
5. Alpha-2-antiplasmin: a serpin with two separate but overlapping reactive sites. Potempa J; Shieh BH; Travis J Science; 1988 Aug; 241(4866):699-700. PubMed ID: 2456616 [TBL] [Abstract][Full Text] [Related]
6. Reaction of lentil trypsin-chymotrypsin inhibitors with human and bovine proteinases. Weder JK; Kahleyss R J Agric Food Chem; 2003 Dec; 51(27):8045-50. PubMed ID: 14690394 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of alpha 2-antiplasmin by limited reaction with cis-dichlorodiammineplatinum (II). Geary WA; Gonias SL Biochim Biophys Acta; 1989 Jan; 994(1):1-6. PubMed ID: 2521201 [TBL] [Abstract][Full Text] [Related]
8. The reactive site of human alpha 2-antiplasmin. Shieh BH; Travis J J Biol Chem; 1987 May; 262(13):6055-9. PubMed ID: 2437112 [TBL] [Abstract][Full Text] [Related]
9. Complexes between serpins and inactive proteinases are not thermodynamically stable but are recognized by serpin receptors. Enghild JJ; Valnickova Z; Thøgersen IB; Pizzo SV J Biol Chem; 1994 Aug; 269(31):20159-66. PubMed ID: 7519603 [TBL] [Abstract][Full Text] [Related]
10. Inhibition mechanism of a peanut trypsin-chymotrypsin inhibitor, B-III: determination of the reactive sites for trypsin and chymotrypsin. Norioka S; Ikenaka T J Biochem; 1984 Oct; 96(4):1155-64. PubMed ID: 6520118 [TBL] [Abstract][Full Text] [Related]
11. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme. Atassi MZ; Manshouri T Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8282-6. PubMed ID: 8367494 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of binding of bovine trypsin-killikrein inhibitor (K unitz) in which the reactive-site peptide bond Lys-15--Ala-16 is cleaved, to alpha-chymotrypsin and beta-trypsin. Quast U; Engel J; Steffen E; Mair G; Tschesche H; Jering H Eur J Biochem; 1975 Apr; 52(3):505-10. PubMed ID: 1242085 [TBL] [Abstract][Full Text] [Related]
13. Conversion of peanut trypsin-chymotrypsin inhibitor B-III to a chymotrypsin inhibitor by deimination of the P1 arginine residues in two reactive sites. Kurokawa T; Hara S; Takahara H; Sugawara K; Ikenaka T J Biochem; 1987 Jun; 101(6):1361-7. PubMed ID: 3667552 [TBL] [Abstract][Full Text] [Related]
14. Heterologous expression of three plant serpins with distinct inhibitory specificities. Dahl SW; Rasmussen SK; Hejgaard J J Biol Chem; 1996 Oct; 271(41):25083-8. PubMed ID: 8810262 [TBL] [Abstract][Full Text] [Related]
15. Chymotrypsin inhibitory activity of normal C1-inhibitor and a P1 Arg to His mutant: evidence for the presence of overlapping reactive centers. Aulak KS; Davis AE; Donaldson VH; Harrison RA Protein Sci; 1993 May; 2(5):727-32. PubMed ID: 8495195 [TBL] [Abstract][Full Text] [Related]
16. Inhibitors of human and bovine trypsin and chymotrypsin in fenugreek (Trigonella foenum-graecum L.) seeds. Reaction with the human and bovine proteinases. Weder JK; Haussner K Z Lebensm Unters Forsch; 1991 Oct; 193(4):321-5. PubMed ID: 1767594 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of the Bowman-Birk Inhibitor from Vigna unguiculata seeds in complex with beta-trypsin at 1.55 A resolution and its structural properties in association with proteinases. Barbosa JA; Silva LP; Teles RC; Esteves GF; Azevedo RB; Ventura MM; de Freitas SM Biophys J; 2007 Mar; 92(5):1638-50. PubMed ID: 17142290 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory property characterization and reactive site exploration of the arrowhead proteinase inhibitor. Yang HL; Wang LX; Zhu DX; Qi ZW Sci China B; 1991 Jul; 34(7):832-9. PubMed ID: 1878144 [TBL] [Abstract][Full Text] [Related]
19. Effects of amino acid replacements around the reactive site of chicken ovomucoid domain 3 on the inhibitory activity toward chymotrypsin and trypsin. Kojima S; Takagi N; Minagawa T; Fushimi N; Miura KI Protein Eng; 1999 Oct; 12(10):857-62. PubMed ID: 10556246 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of the serpin alpha(2)-antiplasmin by stromelysin-1. Lijnen HR; Van Hoef B; Collen D Biochim Biophys Acta; 2001 Jun; 1547(2):206-13. PubMed ID: 11410276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]