These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 7684175)
1. Peptidergic and aminergic centers in the Helix cerebral ganglia: somatotopy and immunocytochemistry. Hernádi L; Elekes K Acta Biol Hung; 1993; 44(1):89-92. PubMed ID: 7684175 [TBL] [Abstract][Full Text] [Related]
2. Topographic organization of efferent neurons with different neurochemical characters in the cerebral ganglia of the snail Helix pomatia. Hernádi L Microsc Res Tech; 2000 Jun; 49(6):521-33. PubMed ID: 10862109 [TBL] [Abstract][Full Text] [Related]
3. Neurons with different immunoreactivity form clusters in the CNS of Helix pomatia. Hernádi L; Elekes K Acta Biol Hung; 1995; 46(2-4):271-80. PubMed ID: 8853698 [TBL] [Abstract][Full Text] [Related]
4. Bioactive peptides and serotonin immunocytochemistry in the cerebral ganglia of hibernating Helix aspersa. Bernocchi G; Vignola C; Scherini E; Necchi D; Pisu MB J Exp Zool; 1998 Apr; 280(5):354-67. PubMed ID: 9503655 [TBL] [Abstract][Full Text] [Related]
5. Characterization of catch-relaxing peptide (CARP) immunoreactive neurons in the Helix nervous system. Hernádi L; Terano Y; Muneoka Y; Kiss T Acta Biol Hung; 1993; 44(1):93-5. PubMed ID: 8493855 [TBL] [Abstract][Full Text] [Related]
6. Peptidergic neurons in the snail Helix pomatia: distribution of neurons in the central and peripheral nervous systems that react with an antibody raised to the insect neuropeptide, leucokinin I. Elekes K; Hernádi L; Muren JE; Nässel DR J Comp Neurol; 1994 Mar; 341(2):257-72. PubMed ID: 7513000 [TBL] [Abstract][Full Text] [Related]
7. Distribution of APGWa-immunoreactive substances in the central nervous system and reproductive apparatus of Helix aspersa. Griffond B; Van Minnen J; Colard C Zoolog Sci; 1992 Jun; 9(3):533-9. PubMed ID: 1369232 [TBL] [Abstract][Full Text] [Related]
8. Topographic organization of serotonergic and dopaminergic neurons in the cerebral ganglia and their peripheral projection patterns in the head areas of the snail Helix pomatia. Hernádi L; Elekes K J Comp Neurol; 1999 Aug; 411(2):274-87. PubMed ID: 10404253 [TBL] [Abstract][Full Text] [Related]
9. Coexistence of FMRFamide, met-enkephalin and serotonin in molluscan neurons. Takayanagi H; Takeda N Comp Biochem Physiol A Comp Physiol; 1988; 91(3):613-20. PubMed ID: 2906841 [TBL] [Abstract][Full Text] [Related]
10. Peripheral connections of FMRFamide-like immunoreactive neurons in the snail, helix pomatia: an immunogold electron microscopic study. Elekes K; Ude J J Neurocytol; 1994 Dec; 23(12):758-69. PubMed ID: 7897441 [TBL] [Abstract][Full Text] [Related]
11. Presence and distribution of immunoreactive FMRFamide- and bovine pancreatic polypeptide-like peptides in a protochordate ascidian. Pestarino M; Lucaroni B; Distefano S Eur J Histochem; 1993; 37(3):225-32. PubMed ID: 7693060 [TBL] [Abstract][Full Text] [Related]
12. FMRFamide-related peptides, partial serotonin depletion, and osmoregulation in Helisoma duryi (Mollusca: Pulmonata). Khan HR; Price DA; Doble KE; Greenberg MJ; Saleuddin AS J Comp Neurol; 1998 Mar; 393(1):25-33. PubMed ID: 9520098 [TBL] [Abstract][Full Text] [Related]
13. Serotonin immunoreactivity in the optic lobes of the sphinx moth Manduca sexta and colocalization with FMRFamide and SCPB immunoreactivity. Homberg U; Hildebrand JG J Comp Neurol; 1989 Oct; 288(2):243-53. PubMed ID: 2677065 [TBL] [Abstract][Full Text] [Related]
14. Somatotopic representation of the head areas in the cerebral ganglion of the snail Helix pomatia. Hernádi L Acta Biol Hung; 1992; 43(1-4):221-30. PubMed ID: 1284359 [TBL] [Abstract][Full Text] [Related]
15. Neural network controlling feeding in Lymnaea stagnalis: immunocytochemical localization of myomodulin, small cardioactive peptide, buccalin, and FMRFamide-related peptides. Santama N; Brierley M; Burke JF; Benjamin PR J Comp Neurol; 1994 Apr; 342(3):352-65. PubMed ID: 7912700 [TBL] [Abstract][Full Text] [Related]
16. Anatomical basis for interactions of enkephalins with other transmitters in the CNS of a snail. Dyakonova V; Carlberg M; Sakharov D; Elofsson R J Comp Neurol; 1995 Oct; 361(1):38-47. PubMed ID: 8550880 [TBL] [Abstract][Full Text] [Related]
17. Correlation of axon projections and peptide immunoreactivity in mesocerebral neurons of the snail Helix aspersa. Li G; Chase R J Comp Neurol; 1995 Feb; 353(1):9-17. PubMed ID: 7714252 [TBL] [Abstract][Full Text] [Related]
18. Immunocytochemical localization of neuropeptide F-immunoreactivity in the circumoesophageal ganglia of the gastropod mollusc, Helix aspersa using electron microscopy. Leung PS; Brennan GP; Halton DW; Shaw C; Maule AG; Irvine GB Tissue Cell; 1994 Feb; 26(1):115-22. PubMed ID: 7909623 [TBL] [Abstract][Full Text] [Related]
19. Neuropeptides in sensory structures of nematodes. Wikgren M; Fagerholm HP Acta Biol Hung; 1993; 44(1):133-6. PubMed ID: 8493844 [TBL] [Abstract][Full Text] [Related]
20. The organization of serotonin-, dopamine-, and FMRFamide-containing neuronal elements and their possible role in the regulation of spontaneous contraction of the gastrointestinal tract in the snail Helix pomatia. Hernádi L; Erdélyi L; Hiripi L; Elekes K J Neurocytol; 1998 Oct; 27(10):761-75. PubMed ID: 10640191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]