These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7684834)

  • 21. Sequence and proposed secondary structure of the Tetrahymena thermophila U3-snRNA.
    Orum H; Nielsen H; Engberg J
    Nucleic Acids Res; 1993 May; 21(10):2511. PubMed ID: 8506144
    [No Abstract]   [Full Text] [Related]  

  • 22. Statistical and Bayesian approaches to RNA secondary structure prediction.
    Ding Y
    RNA; 2006 Mar; 12(3):323-31. PubMed ID: 16495231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison.
    Zuker M; Jaeger JA; Turner DH
    Nucleic Acids Res; 1991 May; 19(10):2707-14. PubMed ID: 1710343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular folding of the Tetrahymena group I intron depends on exon sequence and promoter choice.
    Koduvayur SP; Woodson SA
    RNA; 2004 Oct; 10(10):1526-32. PubMed ID: 15337845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer-aided prediction of RNA secondary structures.
    Auron PE; Rindone WP; Vary CP; Celentano JJ; Vournakis JN
    Nucleic Acids Res; 1982 Jan; 10(1):403-19. PubMed ID: 6174937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Secondary structures of Tetrahymena thermophila rRNA IVS sequence involved in its self-splicing reactions: a new computer analysis.
    Benedetti G; De Santis P; Morosetti S
    J Biomol Struct Dyn; 1990 Jun; 7(6):1269-77. PubMed ID: 2194496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Equilibrium properties and force-driven unfolding pathways of RNA molecules.
    Imparato A; Pelizzola A; Zamparo M
    Phys Rev Lett; 2009 Oct; 103(18):188102. PubMed ID: 19905835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron.
    Emerick VL; Pan J; Woodson SA
    Biochemistry; 1996 Oct; 35(41):13469-77. PubMed ID: 8873616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions.
    Churkin A; Barash D
    BMC Bioinformatics; 2008 Apr; 9():222. PubMed ID: 18445289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of metal ion binding sites in RNA.
    Gonzalez RL; Tinoco I
    Methods Enzymol; 2001; 338():421-43. PubMed ID: 11460561
    [No Abstract]   [Full Text] [Related]  

  • 31. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond.
    Ding Y; Lawrence CE
    Nucleic Acids Res; 2001 Mar; 29(5):1034-46. PubMed ID: 11222752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.
    Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH
    Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A vector-based method for drawing RNA secondary structure.
    Han K; Kim D; Kim HJ
    Bioinformatics; 1999 Apr; 15(4):286-97. PubMed ID: 10320396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.
    Mathews DH; Sabina J; Zuker M; Turner DH
    J Mol Biol; 1999 May; 288(5):911-40. PubMed ID: 10329189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic characterization of single mismatches found in naturally occurring RNA.
    Davis AR; Znosko BM
    Biochemistry; 2007 Nov; 46(46):13425-36. PubMed ID: 17958380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization of ribozymes and small RNA motifs by a sparse matrix approach.
    Doudna JA; Grosshans C; Gooding A; Kundrot CE
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7829-33. PubMed ID: 8356090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Well-determined" regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA.
    Zuker M; Jacobson AB
    Nucleic Acids Res; 1995 Jul; 23(14):2791-8. PubMed ID: 7544463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revolutions in RNA secondary structure prediction.
    Mathews DH
    J Mol Biol; 2006 Jun; 359(3):526-32. PubMed ID: 16500677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA tectonics: towards RNA design.
    Westhof E; Masquida B; Jaeger L
    Fold Des; 1996; 1(4):R78-88. PubMed ID: 9079386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.