BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 7684872)

  • 1. Carboxy-terminal truncations of the HBV core protein affect capsid formation and the apparent size of encapsidated HBV RNA.
    Beames B; Lanford RE
    Virology; 1993 Jun; 194(2):597-607. PubMed ID: 7684872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homologous and heterologous complementation of HBV and WHV capsid and polymerase functions in RNA encapsidation.
    Ziermann R; Ganem D
    Virology; 1996 May; 219(2):350-6. PubMed ID: 8638400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatitis B virus nucleocapsids formed by carboxy-terminally mutated core proteins contain spliced viral genomes but lack full-size DNA.
    Köck J; Nassal M; Deres K; Blum HE; von Weizsäcker F
    J Virol; 2004 Dec; 78(24):13812-8. PubMed ID: 15564489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of nonconventional hepatitis B viruses lacking the core promoter.
    Chang SF; Chang SH; Li BC; Will H; Netter HJ
    Virology; 2004 Dec; 330(2):437-46. PubMed ID: 15567437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis revealed that conservation of hepatitis B virus reverse transcriptase residue 306 (rtP306) is crucial for encapsidation of pregenomic RNA.
    Wang YX; Xu X; Luo C; Ma ZM; Jiang HL; Ding JP; Wen YM
    FEBS Lett; 2007 Feb; 581(3):558-64. PubMed ID: 17254572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability governs the apparent expression of "particulate" hepatitis B e antigen by mutant hepatitis B virus core particles.
    Seifer M; Standring DN
    Virology; 1993 Sep; 196(1):70-8. PubMed ID: 7689282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of RNA templates and encapsidation of spliced viral RNA are influenced by the arginine-rich domain of human hepatitis B virus core antigen (HBcAg 165-173).
    Le Pogam S; Chua PK; Newman M; Shih C
    J Virol; 2005 Feb; 79(3):1871-87. PubMed ID: 15650211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertions within the hepatitis B virus capsid protein influence capsid formation and RNA encapsidation.
    Beames B; Lanford RE
    J Virol; 1995 Nov; 69(11):6833-8. PubMed ID: 7474096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of hepatitis B virus core promoter by transcription factors HNF1 and HNF4 and the viral X protein.
    Zheng Y; Li J; Ou JH
    J Virol; 2004 Jul; 78(13):6908-14. PubMed ID: 15194767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a hepatitis B virus inhibitor, NZ-4, on capsid formation.
    Yang L; Wang YJ; Chen HJ; Shi LP; Tong XK; Zhang YM; Wang GF; Wang WL; Feng CL; He PL; Xu YB; Lu MJ; Tang W; Nan FJ; Zuo JP
    Antiviral Res; 2016 Jan; 125():25-33. PubMed ID: 26611395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein.
    Zlotnick A; Cheng N; Conway JF; Booy FP; Steven AC; Stahl SJ; Wingfield PT
    Biochemistry; 1996 Jun; 35(23):7412-21. PubMed ID: 8652518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural comparisons of hepatitis B core antigen particles with different C-terminal lengths.
    Liu S; He J; Shih C; Li K; Dai A; Zhou ZH; Zhang J
    Virus Res; 2010 May; 149(2):241-4. PubMed ID: 20144668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity and common features of defective hepatitis B virus genomes derived from spliced pregenomic RNA.
    Günther S; Sommer G; Iwanska A; Will H
    Virology; 1997 Nov; 238(2):363-71. PubMed ID: 9400609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of hepatitis B virus core C-terminally truncated protein (Cp149) by PKC increases capsid assembly and stability.
    Kang H; Yu J; Jung G
    Biochem J; 2008 Nov; 416(1):47-54. PubMed ID: 18605987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cis-preferential recruitment of duck hepatitis B virus core protein to the RNA/polymerase preassembly complex.
    von Weizsäcker F; Köck J; Wieland S; Beck J; Nassal M; Blum HE
    Hepatology; 2002 Jan; 35(1):209-16. PubMed ID: 11786978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A putative new domain target for anti-hepatitis B virus: residues flanking hepatitis B virus reverse transcriptase residue 306 (rtP306).
    Wang YX; Xu X; Luo C; Ma ZM; Jiang HL; Ding JP; Wen YM
    J Med Virol; 2007 Jun; 79(6):676-82. PubMed ID: 17457904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Out-of-frame versus in-frame core internal deletion variants of human and woodchuck hepatitis B viruses.
    Sahu GK; Tai PC; Chatterjee SB; Lin MH; Tennant B; Gerin J; Shih C
    Virology; 2002 Jan; 292(1):35-43. PubMed ID: 11878906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interface between hepatitis B virus capsid proteins affects self-assembly, pregenomic RNA packaging, and reverse transcription.
    Tan Z; Pionek K; Unchwaniwala N; Maguire ML; Loeb DD; Zlotnick A
    J Virol; 2015 Mar; 89(6):3275-84. PubMed ID: 25568211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced replication contributes to enrichment of hepatitis B virus with a deletion in the core gene.
    Günther S; Piwon N; Jung A; Iwanska A; Schmitz H; Will H
    Virology; 2000 Aug; 273(2):286-99. PubMed ID: 10915599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant negative mutants of the duck hepatitis B virus core protein interfere with RNA pregenome packaging and viral DNA synthesis.
    von Weizsäcker F; Köck J; Wieland S; Offensperger WB; Blum HE
    Hepatology; 1999 Jul; 30(1):308-15. PubMed ID: 10385672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.