These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7685102)

  • 1. Allosteric mechanism for translational repression in the Escherichia coli alpha operon.
    Spedding G; Draper DE
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4399-403. PubMed ID: 7685102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site.
    Philippe C; Eyermann F; Bénard L; Portier C; Ehresmann B; Ehresmann C
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4394-8. PubMed ID: 7685101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome initiation complex formation with the pseudoknotted alpha operon messenger RNA.
    Spedding G; Gluick TC; Draper DE
    J Mol Biol; 1993 Feb; 229(3):609-22. PubMed ID: 7679446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for allosteric coupling between the ribosome and repressor binding sites of a translationally regulated mRNA.
    Tang CK; Draper DE
    Biochemistry; 1990 May; 29(18):4434-9. PubMed ID: 2112408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational repression of the Escherichia coli alpha operon mRNA: importance of an mRNA conformational switch and a ternary entrapment complex.
    Schlax PJ; Xavier KA; Gluick TC; Draper DE
    J Biol Chem; 2001 Oct; 276(42):38494-501. PubMed ID: 11504736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A competition mechanism regulates the translation of the Escherichia coli operon encoding ribosomal proteins L35 and L20.
    Haentjens-Sitri J; Allemand F; Springer M; Chiaruttini C
    J Mol Biol; 2008 Jan; 375(3):612-25. PubMed ID: 18037435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IF2 and unique features of initiator tRNA
    Roy B; Liu Q; Shoji S; Fredrick K
    RNA Biol; 2018; 15(4-5):604-613. PubMed ID: 28914580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiation of Escherichia coli ribosomes on matrix coupled mRNAs studied by optical biosensor technique.
    Karlsson M; Pavlov MY; Malmqvist M; Persson B; Ehrenberg M
    Biochimie; 1999 Oct; 81(10):995-1002. PubMed ID: 10575353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translation initiation complex formation with 30 S ribosomal particles mutated at conserved positions in the 3'-minor domain of 16 S RNA.
    Ringquist S; Cunningham P; Weitzmann C; Formenoy L; Pleij C; Ofengand J; Gold L
    J Mol Biol; 1993 Nov; 234(1):14-27. PubMed ID: 8230193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural elements of rps0 mRNA involved in the modulation of translational initiation and regulation of E. coli ribosomal protein S15.
    Philippe C; Bénard L; Eyermann F; Cachia C; Kirillov SV; Portier C; Ehresmann B; Ehresmann C
    Nucleic Acids Res; 1994 Jul; 22(13):2538-46. PubMed ID: 8041615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Footprinting mRNA-ribosome complexes with chemical probes.
    Hüttenhofer A; Noller HF
    EMBO J; 1994 Aug; 13(16):3892-901. PubMed ID: 8070416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S4-alpha mRNA translation regulation complex. II. Secondary structures of the RNA regulatory site in the presence and absence of S4.
    Deckman IC; Draper DE
    J Mol Biol; 1987 Jul; 196(2):323-32. PubMed ID: 2443720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosome-mRNA contact sites at different stages of translation initiation as revealed by cross-linking of model mRNAs.
    Brandt R; Gualerzi CO
    Biochimie; 1991 Dec; 73(12):1543-9. PubMed ID: 1725265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initiation complex formation on Euglena chloroplast 30S subunits in the presence of natural mRNAs.
    Wang CC; Roney WB; Alston RL; Spremulli LL
    Nucleic Acids Res; 1989 Dec; 17(23):9735-47. PubMed ID: 2690007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome.
    Hüttenhofer A; Heider J; Böck A
    Nucleic Acids Res; 1996 Oct; 24(20):3903-10. PubMed ID: 8918790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli.
    Wikström PM; Lind LK; Berg DE; Björk GR
    J Mol Biol; 1992 Apr; 224(4):949-66. PubMed ID: 1569581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of protein synthesis. Binding of messenger RNA.
    Jay G; Kaempfer R
    J Biol Chem; 1975 Aug; 250(15):5742-8. PubMed ID: 1097442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilised secondary structure at a ribosomal binding site enhances translational repression in E. coli.
    Brunel C; Romby P; Sacerdot C; de Smit M; Graffe M; Dondon J; van Duin J; Ehresmann B; Ehresmann C; Springer M
    J Mol Biol; 1995 Oct; 253(2):277-90. PubMed ID: 7563089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor.
    Tang CK; Draper DE
    Cell; 1989 May; 57(4):531-6. PubMed ID: 2470510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.